Skip to main content

Advertisement

Log in

Preparation and Evaluation of Dual Targeting Nanoparticles for Oral Cancer

  • Biomaterial
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A dual-receptor targeting delivery system based on acid-cleavage hydrazone bond was developed in the study. The characters of CMCS-hyd-CUR-EGFR- mAb were identifed. The in vitro release studies revealed that this drug delivery system was acid-sensitive, and the self-assembled nanoparticles which were spherical. The in vitro results indicated that the dual-receptor targeting nanoparticles could be faster internalized into the Cal-27 cells via receptor-mediated endocytosis, which exhibited better antitumor activity than the one-receptor nanoparticles. The experimental results clearly reveal that CMCS-hyd-CUR-EGFR mAb provides a novel way for drug delivery in oral cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang PY, Peng SF, Lee CY, et al. Curcumin-loaded Nanoparticles Induce Apoptotic Cell Death Through Regulation of the Function of MDR1 and Reactive Oxygen Species in Cisplatin-resistant CAR Human Oral Cancer Cells[J]. International Journal of Oncology, 2013, 43(4): 1 141–1 150

    Article  CAS  Google Scholar 

  2. Cheng YSL, Rees T, Wright J. A Review of Research on Salivary Biomarkers for Oral Cancer Detection[J]. Clinical & Translational Medicine, 2014, 3(1): 1 544–1 553

    Article  Google Scholar 

  3. Zlotogorski A, Dayan A, Dayan D, et al. Nutraceuticals as New Treatment Approaches for Oral Cancer: II. Green Tea Extracts and Resveratrol[J]. Oral Oncology, 2013, 49(3): 187–191

    Article  CAS  Google Scholar 

  4. Bandi R. Nanotechnology: A Pharmacutical Approach[J]. World Journal of Pharmaceutical Research, 2017, 6: 779–790

    Article  CAS  Google Scholar 

  5. Li M, Ma Y, Ngadi MO. Binding of Curcumin to β-lactoglobulin and Its Effect on Antioxidant Characteristics of Curcumin[J]. Food Chemistry, 2013, 141(2): 1 504–1 511

    Article  CAS  Google Scholar 

  6. Chopra M, Jain R, Dewangan AK, et al. Design of Curcumin Loaded Polymeric Nanoparticles-Optimization, Formulation and Characterization[J]. Journal of Nanoscience & Nanotechnology, 2016, 16(9): 9 432–9 442

    Article  CAS  Google Scholar 

  7. Neetu S, Vishal R, Deeba Z, et al. Insulin Catalyzes the Curcumin-in-duced Wound Healing: Anin Vitromodel for Gingival Repair[J]. Indian Journal of Pharmacology, 2012, 44(4): 458–462

    Article  Google Scholar 

  8. Ahmad MZ, Alkahtani SA, Akhter S, et al. Progress in Nanotechnology-based drug Carrier in Designing of Curcumin Nanomedicines for Cancer Therapy: Current State-of-the-art[J]. Journal of Drug Targeting, 2016, 24(4): 273–284

    Article  CAS  Google Scholar 

  9. Khalil NM, Casa DM, Dalmolin LF, et al. Pharmacokinetics of Curcumin-loaded PLGA and PLGA-PEG Blend Nanoparticles After Oral Administration in Rats[J]. Colloids & Surfaces B Biointerfaces, 2013, 101(1): 353–360

    Article  CAS  Google Scholar 

  10. Gao Y, Wang C, Sun M, et al. In Vivo Evaluation of Curcumin Loaded Nanosuspensions by Oral Administration[J]. Journal of Biomedical Nanotechnology, 2012, 8(4): 659–668

    Article  CAS  Google Scholar 

  11. Zhang X, Li L, Li C, et al. Cisplatin-crosslinked Glutathione-sensitive Micelles Loaded with Doxorubicin for Combination and Targeted Therapy of Tumors[J]. Carbohydrate Polymers, 2017, 155(2): 407–415

    Article  CAS  Google Scholar 

  12. Kayat J, Mehra NK, Gajbhiye V, et al. Drug Targeting to Arthritic Region Via Folic Acid Appended Surface-engineered Multi-walled Carbon Nanotubes[J]. Journal of Drug Targeting, 2015, 24(4): 318–327

    Article  Google Scholar 

  13. Cohen RB. Current Challenges and Clinical Investigations of Epidermal Growth Factor Receptor (EGFR) and ErbB Family-targeted Agents in the Treatment of Head and Neck Squamous Cell Carcinoma (HNSCC)[J]. Cancer Treatment Reviews, 2014, 40(4): 567–577

    Article  CAS  Google Scholar 

  14. Leemans CR, Braakhuis BJ, Brakenhoff RH. The Molecular Biology of Head and Neck Cancer[J]. Nature Reviews Cancer, 2011, 11(1): 9–22

    Article  CAS  Google Scholar 

  15. Jayakumar R, Prabaharan M, Nair SV, et al. Novel Carboxymethyl Derivatives of Chitin and Chitosan Materials and Their Biomedical Applications[J]. Progress in Materials Science, 2010, 55(7): 675–709

    Article  CAS  Google Scholar 

  16. Kaur S, Dhillon GS. The Versatile Biopolymer Chitosan: Potential Sources, Evaluation of Extraction Methods and Applications[J]. Critical Reviews in Microbiology, 2013, 40(2): 155–175

    Article  Google Scholar 

  17. Zhang X, Zhang H, Yin L, et al. A pH-Sensitive Nanosystem Based on Carboxymethyl Chitosan for Tumor-Targeted Delivery of Daunorubicin.[J]. Journal of Biomedical Nanotechnology, 2016, 12(8): 1 688–1 698

    Article  CAS  Google Scholar 

  18. Fu D, Han B, Dong W, et al. Effects of Carboxymethyl Chitosan on the Blood System of Rats[J]. Biochemical & Biophysical Research Communications, 2011, 408(1): 110–114

    Article  CAS  Google Scholar 

  19. Dong W, Han B, Feng Y, et al. Pharmacokinetics and Biodegradation Mechanisms of a Versatile Carboxymethyl Derivative of Chitosan in Rats: In Vivo and In Vitro Evaluation[J]. Biomacromolecules, 2010, 11(6): 1 527–1 533

    Article  CAS  Google Scholar 

  20. Zheng M, Han B, Yang Y, et al. Synthesis, Characterization and Biological Safety of O-carboxymethyl Chitosan Used to Treat Sarcoma 180 Tumor[J]. Carbohydrate Polymers, 2011, 86(1): 231–238

    Article  CAS  Google Scholar 

  21. Lee J, Yun KS, Chang SC, et al. T Cell-Specifc siRNA Delivery Using Antibody-Conjugated Chitosan Nanoparticles[J]. Bioconjug Chem, 2012, 23(6): 1 174–1 180

    Article  CAS  Google Scholar 

  22. Clogston JD, Patri AK. Zeta Potential Measurement[J]. Methods Mol Biol, 2011, 697(697): 63–70

    Article  CAS  Google Scholar 

  23. Raveendran R, Bhuvaneshwar GS, Sharma CP. Hemocompatible Curcumin-dextran Micelles as pH Sensitive Pro-drugs for Enhanced Therapeutic Efficacy in Cancer Cells[J]. Carbohydrate Polymers, 2016, 137(1): 597–507

    Google Scholar 

  24. Luo Z, Jiang J. pH-sensitive drug Loading/Releasing in Amphiphilic Copolymer PAE-PEG: Integrating Molecular Dynamics and Dissipative Particle Dynamics Simulations[J]. Journal of Controlled Release, 2012, 162(1): 185–193

    Article  CAS  Google Scholar 

  25. Qiu L, Li Z, Qiao M, et al. Self-assembled pH-responsive Hyaluronic Acid-g-poly((L)-histidine) Copolymer Micelles for Targeted Intracellular Delivery of Doxorubicin[J]. Acta Biomaterialia, 2014, 10(5): 2 024–2 035

    Article  CAS  Google Scholar 

  26. Rosen H, Abribat T. The Rise and Rise of drug Delivery[J]. Nature Reviews Drug Discovery, 2005, 4(5): 381–385

    Article  CAS  Google Scholar 

  27. Zhao Y, Yang R, Liu D, et al. Starburst Low-molecular Weight Poly-ethylenimine for Efficient Gene Delivery[J]. Journal of Biomedical Materials Research Part A, 2011, 100A(1): 134–140

    Article  Google Scholar 

  28. Gao M, Chen C, Fan A, et al. Stimuli-responsive Polymer-curcumin Conjugate Micelles: Residual Cytotoxicity Analysis[J]. Nanomedicine Nanotechnology Biology & Medicine, 2016, 12(2): 468–468

    Article  Google Scholar 

  29. Nordberg J. EGFR Targeting drugs in the Treatment of Head and Neck Squamous Cell Carcinoma[J]. Expert Opinion on Emerging Drugs, 2010, 15(2): 185–201

    Article  Google Scholar 

  30. Zhang H, Yun S, Batuwangala TD, et al. A Dual-targeting Antibody Against EGFR-VEGF for Lung and Head and Neck Cancer Treatment[J]. International Journal of Cancer, 2012, 131(4): 956–969

    Article  CAS  Google Scholar 

  31. Zhou H, Xu H, Li X, et al. Dual Targeting Hyaluronic Acid - RGD Mesoporous Silica Coated Gold Nanorods for Chemo-photothermal Cancer Therapy[J]. Materials Science & Engineering C Materials for Biological Applications, 2017, 81(1): 261–270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Chen  (陈芷筠) or Gang Zhou  (周刚).

Additional information

Funded by the National Natural Science Foundation of China (Nos.81771080 and 8131147), the Opening Project of Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients (No. HLPAI 2014006) and the Health Commission of Hubei Province Scientific Research Project (No. WJ2019H275)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xiong, F., Zhang, X. et al. Preparation and Evaluation of Dual Targeting Nanoparticles for Oral Cancer. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1495–1504 (2019). https://doi.org/10.1007/s11595-019-2218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2218-4

Key words

Navigation