Skip to main content
Log in

Dielectric properties of unfilled tetragonal tungsten bronze Ba4PrFe0.5Nb9.5O30 ceramics

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

In order to found new dielectrics ceramics in tungsten bronze structure, unfilled tungsten bronze (TB) ceramics with nominal formula Ba4PrFe0.5Nb9.5O30 were prepared by the solid state reaction method. The microstructure and dielectric properties were studied using powder X-ray diffraction, field emission scanning electron microscope, and variable temperature dielectric test system. The results show that the ceramics have a single phase and belong to the space group of P4bm with the cell of a = b = 12.4839(3) Å, c = 3.9409(5) Å, V = 614.192(2) Å3. The frequency dependent dielectrics properties show that the ceramics have a Debye-like relaxation at room temperature, while the temperature dependent dielectrics properties indicate that the ceramics are a relaxor and the relaxation is due to the nanopolars and oxygen vacancies. The ceramics have a potential application in electronic ceramics as temperature-stable multilayer ceramic capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, RE. Relaxors Go Critical[J]. Nature, 2006, 441: 941–942

    Article  Google Scholar 

  2. Anem, S, Rao, KS, Rao, KH. Investigation of Lanthanum Substitution in Lead-free BNBT Ceramics for Transducer Applications[J]. Ceram. Int., 2016, 42: 15319–15326

    Article  Google Scholar 

  3. Hu, CZ, Hou, LJ, Fang, L, et al. Preparation and Dielectric Properties of Unfilled Tungsten Bronze Ferroelectrics Ba4RETiNb9O30[J]. J. Alloy. Compd., 2013, 581: 547–552

    Article  Google Scholar 

  4. Li WB, Zhou D, He B, et al. Structure and Dielectric Properties of Nd(Zn1/2Ti1/2)O3-BaTiO3 Ceramics for Energy Storage Applications[J]. J. Alloy. Compd., 2016, 685: 418–422

    Article  Google Scholar 

  5. Qiao XS, Chen XM, Lian HL, et al. Dielectric, Ferroelectric, Piezoelectric Properties and Impedance Analysis of Nonstoichiometric (Bi0.5Na0.5)(0.94+x)Ba0.06TiO3 Ceramics[J]. J. Eur. Ceram. Soc., 2016, 36: 3995–4001

    Article  Google Scholar 

  6. Yang P, Yang B, Hao SL, et al. Variation of Electrical Properties with Structural Vacancies in Ferroelectric Niobates (Sr0.53Ba0.47)(2.5-0.5x)NaxN-b5O15 Ceramics[J]. J. Alloy. Compd., 2016, 685: 175–185

    Article  Google Scholar 

  7. Gao TT, Chen W, Zhu XN, et al. Dielectric and Ferroelectric Characteristics of Ba4Pr2Fe2Nb8O30 Tungsten Bronze Ceramics[J]. Mater. Chem. Phys., 2016, 181: 47–53

    Article  Google Scholar 

  8. Liu LL, Hou ZP, Quan XJ. Effect of Li+ Ion Occupancy on Microstructure and Dielectric Characteristics in KSr2Nb5O15 Tungsten Bronze Ceramics[J]. Mater. Sci. Eng. B, 2016, 211: 1–6

    Article  Google Scholar 

  9. Hu CZ, Sun Z, Zhu QH, et al. Dielectric and Ferroelectric Properties of Unfilled Tungsten Bronze KBa3RNb10O30 Ceramics[J]. J. Mater. Sci. Mater. Electron., 2015, 26: 515–520

    Article  Google Scholar 

  10. Simon A, Ravez J. Solid-state Chemistry and Non-linear Properties of Tetragonal Tungsten Bronzes Materials[J]. Comptes Rendus Chim., 2006, 9: 1268–1276

    Article  Google Scholar 

  11. Rotaru A, Miller AJ, Arnold DC, et al. Towards Novel Multiferroic and Magnetoelectric Materials: Dipole Stability in Tetragonal Tungsten Bronzes[J]. Phil. Trans. R. Soc. A, 2014, 372: 20120451

    Article  Google Scholar 

  12. Bijumon PV, Kohli V, Parkash O, et al. Dielectric Properties of Ba5M-Ti3A7O30 [M = Ce, Pr, Nd, Sm, Gd, Dy and Bi; A = Nb, Ta] Ceramics[J]. Mater. Sci. Eng. B, 2004, 113: 13–18

    Article  Google Scholar 

  13. Shannigrahi SR, Choudhary RN, Kumar PA, et al. Phase Transition in Ba5RTi3Nb7O30 (R = Dy, Sm) Ferroelectric Ceramics[J]. J. Phys. Chem. Solids, 1998, 59: 737–742

    Article  Google Scholar 

  14. Chen XM, Sun YH, Zheng XH. High Permittivity and Low Loss Dielectric Ceramics in the BaO-La2O3-TiO2-Ta2O5 System[J]. J. Eur. Ceram. Soc., 2003, 23:1571–1575

    Article  Google Scholar 

  15. Stennett MC, Miles GC, Sharman J, et al. A New Family of Ferroelectric Tetragonal Tungsten Bronze Phases Ba2MTi2X3O15[J]. J. Eur. Ceram. Soc., 2005, 25: 2471–2475

    Article  Google Scholar 

  16. Zhang J, Wang G, Gao F, et al. Influence of Sr/Ba Ratio on the Dielectric, Ferroelectric and Pyroelectric Properties of Strontium Barium Niobate Ceramics[J]. Ceram. Int., 2013, 39: 1971–1976

    Article  Google Scholar 

  17. Huang CJ, Li K, Liu XQ, et al. Effects of A1/A2-Sites Occupancy upon Ferroelectric Transition in (SrxBa1−x)Nb2O6 Tungsten Bronze Ceramics[J]. J. Am. Ceram. Soc., 2014, 97: 507–512

    Article  Google Scholar 

  18. Elissalde C, Ravez J. Relaxation Mechanisms in Sr0.3Ba0.7Nb2O6[J]. J. Mater. Chem., 2000, 10: 681–683

    Article  Google Scholar 

  19. Pandey CS, Schreuer J, Burianek M, et al. Relaxor Behavior of Cax-Ba1-xNb2O6(0.18 ≤ x ≤ 0.35) Tuned by Ca/Ba Ratio and Investigated by Resonant Ultrasound Spectroscopy[J]. Phys. Rev.B, 2013, 87: 094 101

    Article  Google Scholar 

  20. Pandey CS, Schreuer J, Burianek M, et al. Relaxor Behavior of Ferroelectric Ca0.22Sr0.12Ba0.66Nb2O6[J]. Appl. Phys. Lett., 2013, 102: 022903

    Article  Google Scholar 

  21. Wakiya N, Wang, JK, Saiki A, et al. Synthesis and Dielectric Properties of Ba1-xR2x/3Nb2O6 (R: rare earth) With Tetragonal Tungsten Bronze Structure[J]. J. Eur. Ceram. Soc., 1999, 19: 1071–1075

    Article  Google Scholar 

  22. Gardner J, Morrison FD. A-site Size Effect in a Family of Unfilled Ferroelectric Tetragonal Tungsten Bronzes: Ba4R0.67Nb10O30 (R = La, Nd, Sm, Gd, Dy and Y)[J]. Dal. Trans., 2014, 43: 11687–11695

    Article  Google Scholar 

  23. Chen W, Yang WZ, Liu XQ, et al. Structural, Dielectric and Magnetic Properties of Ba3SrLn2Fe2Nb8O30 (Ln = La, Nd, Sm) Filled Tungsten Bronze Ceramics[J]. J. Alloy. Compd., 2016, 675: 311–316

    Article  Google Scholar 

  24. Ma HQ, Lin K, Liu LJ, et al. Structure and Electrical Properties of Tetragonal Tungsten Bronze Ba2CeFeNb4O15[J]. Rsc Adv., 2015, 5: 76957–76962

    Article  Google Scholar 

  25. Josse M, Heijboer P, Albino M, et al. Original Crystal-Chemical Behaviors in (Ba,Sr)2Ln(Fe,Nb,Ta)5O15 Tetragonal Tungsten Bronze: Anion-Driven Properties Evidenced by Cationic Substitutions[J]. Crys. Growth Design, 2014, 14: 5428–5435

    Article  Google Scholar 

  26. Albino M, Veber P, Pechev S, et al. Growth and Characterization of Ba2LnFeNb4O15 (Ln = Pr, Nd, Sm, Eu) Relaxor Single Crystals[J]. Crys. Growth Design, 2014, 14: 500–512

    Article  Google Scholar 

  27. Josse M, Bidault O, Roulland F, et al. The Ba2LnFeNb4O15 “Tetragonal Tungsten Bronze”: Towards RT Composite Multiferroics[J]. Solid State Sci., 2009, 11: 1118–1123

    Article  Google Scholar 

  28. Hu CZ, Sun Z, Zhu QH, et al. Relaxor Behavior and Ferroelectric Properties of a New Ba4SmFe0.5Nb9.5O30 Tungsten Bronze Ceramic[J]. Ceram. Int., 2016, 42: 14999–15004

    Article  Google Scholar 

  29. Coelho A. Coelho Software[CP]. Brisbane, Australia, 2007

    Google Scholar 

  30. SHANNON RD. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides[J]. Acta Cryst., 1976, 32: 751–767

    Article  Google Scholar 

  31. Bokov AA, Ye ZG. Dielectric Relaxation in Relaxor Ferroelectrics[J]. J. Adv. Dielectrics, 2012, 2:1241010

    Article  Google Scholar 

  32. Ravez J, Simon A. Some Solid State Chemistry Aspects of Lead-free Relaxor Ferroelectrics[J]. J. Solid State Chem., 2001, 162: 260–265

    Article  Google Scholar 

  33. Li K, Zhu XL, Liu XQ. et al. Relaxor Ferroelectric Characteristics of Ba5LaTi3Nb7O30 Tungsten Bronze Ceramics[J]. Appl. Phys. Lett., 2012, 100: 012902

    Article  Google Scholar 

  34. Gong G, Zerihun G, Fang Y, et al. Relaxor Behavior and Large Room-temperature Polarization of Ferroelectric Sr4CaBiTi3Nb7O30 Ceramics[J]. J. Am. Ceram. Soc., 2015, 98: 109–113

    Article  Google Scholar 

  35. Ang C, Yu Z, Cross LE. Oxygen-vacancy-related Low-frequency Dielectric Relaxation and Electrical Conduction in Bi:SrTiO3[J]. Phys. Rev. B, 2000, 62: 228–236

    Article  Google Scholar 

  36. Padhee R, Das PR, Parida BN, et al. Dielectric and Electrical Properties of a Tungsten Bronze Tantalate Ceramic[J]. Curr. Appl. Phys., 2013, 13:1014–1020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changzheng Hu  (胡长征).

Additional information

Funded by the National Natural Science Foundation of China (11564009), the Natural Science Foundation of Guangxi Province (2013GXNSFBA019230 and 2014GXNSFAA118350), and the Open Founding of Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (13KF-17 and 15KF-12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhu, Q., Sun, Z. et al. Dielectric properties of unfilled tetragonal tungsten bronze Ba4PrFe0.5Nb9.5O30 ceramics. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 904–909 (2017). https://doi.org/10.1007/s11595-017-1688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1688-5

Key words

Navigation