Skip to main content
Log in

Microwave synthesis of CdTe/TGA quantum dots and their thermodynamic interaction with bovine serum albumin

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The thioglycollic acid (TGA) as a capping agent, CdTe/TGA quantum dots (QDs) with excellent properties were synthesized under microwave irradiation. The TGA/Cd/Te molar ratios, reaction time, temperature and pH are the crucial factors for properties of QDs. The QDs were characterized by UV-vis absorption and fluorescence spectra, transmission electron microscopy and Fourier transform infrared spectroscopy. The experimental results show that when the pH value is 11.5 and molar ratio of TGA:Cd:Te is 1.2:1:0.4 at 100 °C heating for 15 min, the resulted QDs exhibit a high fluorescence quantum yield of 78%. The fluorescence full width at half maximum (FHMW) of QDs is around 23 nm. The products are spherical with average size of 3-5 nm. There is a strong coordination effect between TGA and Cd2+. Moreover, the results of interaction between as-made QDs and bovine serum albumin (BSA) suggest that the QDs-BSA binding reaction is a static quenching. The negative values of free energy (△G<0) suggest that the binding process is spontaneous, △H<0 and △S<0 show that hydrogen bonds and van der Waals interactions play a major role in the binding reaction between QDs and BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos AP. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals[J]. J. Phys. Chem., 1996, 100 (31): 13226–13239

    Article  Google Scholar 

  2. Chan WCW, Nie SM. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science, 1998, 281: 2016–2018

    Article  Google Scholar 

  3. Ghali M. Static quenching of Bovine Serum Albumin Conjugated with Small Size CdS Nanocrystalline Quantum Dots[J]. J. Lumin., 2010, 130: 1254–1257

    Article  Google Scholar 

  4. Behboudnia M, Azizianekalandaragh Y. Synthesis and Characterization of CdSe Semiconductor Nanoparticles by Ultrasonic Irradiation[J]. Mat. Sci. Eng. B, 2007, 138: 65–68

    Article  Google Scholar 

  5. EI-Nahass MM, Youssef GM, Sohaila ZN. Structural and Optical Characterization of CdTe Quantum Dots Thin Films[J]. J. Alloy Compounds, 2014, 604: 253–259

    Article  Google Scholar 

  6. Tang GC, Du LP, Su XG. Detection of Melamine Based on the Fluorescence Resonance Energy Transfer between CdTe QDs and Rhodamine B[J]. Food Chem., 2013, 141: 4060–4065

    Article  Google Scholar 

  7. Dai XL, Zhang ZX, Jin YZ, et al. Solution-processed, High-performance Light-emitting Diodes Based on Quantum Dots[J]. Nature, 2014, 515, 96–99

    Article  Google Scholar 

  8. Nguyen KC, Willmore WG, Tayabali AF. Cadmium Telluride Quantum Dots Cause Oxidative Stress Leading to Extrinsic and Intrinsic Apoptosis in Hepatocellular Carcinoma HepG2 Cells[J]. Toxicology, 2013, 306: 114–123

    Article  Google Scholar 

  9. Liu YX, Wang P, Wang Y, et al. The Influence on Cell Cycle and Cell Division by Various Cadmium-containing Quantum Dots[J]. Small, 2013, 9: 2440–2451

    Article  Google Scholar 

  10. Peng ZA, Peng XG. Formation of High-quality CdTe, CdSe and CdS Nanocrystals Using CdO as Precursor[J]. J. Am. Chem. Soc., 2001, 123: 183–184

    Article  Google Scholar 

  11. He Y, Lu HT, Sai LM, et al. Microwave-assisted Growth and Characterization of Water-dispersed CdTe/CdS Core-shell Nanocrystals with High Photoluminescence[J]. J. Phys. Chem. B, 2006,110:13370–13374

    Google Scholar 

  12. He Y, Sai LM, Lu HT. Microwave-assisted Synthesis of Water-dispersed CdTe Nanocrystals with High Luminescent Efficiency and Narrow Size Distribution[J]. Chem. Mater., 2007, 19: 359–365

    Article  Google Scholar 

  13. Rogach AL, Franzl T, Klar TA, et al. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art[J]. J. Phys. Chem. C, 2007, 111: 14628–14637

    Article  Google Scholar 

  14. Chao MR, Chang YZ, Chen JL. Hydrophilic Ionic Liquid-passivated CdTe Quantum Dots for Mercury Ion Detection[J]. Biosens. Bioelectron, 2013; 42: 397–402

    Article  Google Scholar 

  15. Taniguchi S, Green M, Rizvi SB, et al. The One Pot Synthesis of Core/Shell/Shell CdTe/CdSe/ZnSe Quantum Dots in Aqueous Media for in Vivo Deep Tissue Imaging[J]. J. Mater. Chem., 2011, 21: 2877–2882

    Article  Google Scholar 

  16. Lin ZB, Cui SX, Zhang H, et al. Studies on Quantum Dots Synthesized in Aqueous Solution for Biological Labeling Via Electrostatic Interaction[J]. Anal. Biochem., 2003, 319(2): 239–243

    Article  Google Scholar 

  17. Li L, Qian HF, Ren JC. Rapid Synthesis of Highly Luminescent CdTe Nanocrystals in the Aqueous Phase by Microwave Irradiation with Controllable Temperature[J]. Chem. Commun., 2005, 529–530

    Google Scholar 

  18. Rodrigues SSM, Ribeiro DSM, Molina-Garcia L, et al. Fluorescence Enhancement of CdTe MPA-capped Quantum Dots by Glutathione for Hydrogen Peroxide Determination[J]. Talanta, 2014, 122: 157–165

    Article  Google Scholar 

  19. Rodrigues SSM, Prieto DR, Ribeiro DSM, et al. Competitive Metalligand Binding between CdTe Quantum Dots and EDTA for Free Ca2+ Determination[J]. Talanta, 2015, 134: 173–182

    Article  Google Scholar 

  20. Chen HZ, Gong Y, Han R. Cadmium Telluride Quantum Dots (CdTe-QDs) and Enhanced Ultraviolet-B (UV-B) Radiation Trigger Antioxidant Enzyme Metabolism and Programmed Cell Death in Wheat Seedlings[J]. PLoS One, 2014, 9:e110400

    Article  Google Scholar 

  21. Wang Q, Ye F, Fang T, et al. Bovine Serum Albumin-directed Synthesis of Biocompatible CdSe Quantum Dots and Bacteria Labeling[J]. J. Colloid Interf. Sci., 2011, 355: 9–14

    Article  Google Scholar 

  22. Zhang Y, Li JH, Ge YS, et al. Biophysical Studies on the Interactions of a Classic Mitochondrial Uncoupler with Bovine Serum Albumin by Spectroscopic, Isothermal Titration Calorimetric and Molecular Modeling Methods[J]. J. Fluoresc., 2011, 21: 475–485

    Article  Google Scholar 

  23. Wurth C, Grabolle M, Pauli J, et al. Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields[J]. Anal. Chem., 2011, 83(9): 3431–3439

    Article  Google Scholar 

  24. Gattas-Asfura MK, Leblanc RM. Peptide-coated CdS Quantum Dots for the Optical Detection of Copper(II) and Silver(I) [J]. Chem. Commun., 2003, 21: 2684–2685

    Article  Google Scholar 

  25. Sai LM, Lu HT, He Y, et al. Microwave-assisted Growth and Characterizations of Water-dispersed Glutathione-capped ZnSe Nanocrystals[J]. J. Funct. Mater. Devices, 2009, 15: 53–60

    Google Scholar 

  26. Liu P, Wang QS, Li X. Studies on CdSe/l-cysteine Quantum Dots Synthesized in Aqueous Solution for Biological Labeling[J]. J. Phys. Chem. C, 2009, 113: 7670–7676

    Article  Google Scholar 

  27. Kho R, Torres-Mart´ınez CL, Mehra RK. A Simple Colloidal Synthesis for Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders[J]. J. Colloid Interf. Sci., 2000, 227: 561–566

    Article  Google Scholar 

  28. Burda C, Chen X, Narayanan R, et al. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chem. Rev., 2005, 105: 1025–1102

    Article  Google Scholar 

  29. Li CL, Nishikawa K, Ando M, et al. Highly Luminescent Water-soluble ZnSe Nanocrystals and Their Incorporation in a Glass Matrix[J]. Colloid Surf. A: Physicochem. Eng. Asp., 2007, 294: 33–39

    Article  Google Scholar 

  30. Lakowicz JR. Principles of Fluorescence Spectroscopy[M]. 3rd Edition. Springer: New York, 2006: 1–21

    Book  Google Scholar 

  31. Ding L, Zhou PJ, Li SQ, et al. Spectroscopic Studies on the Thermodynamics of L-Cysteine Capped CdSe/CdS Quantum Dots-BSA Interactions[J]. J. Fluoresc., 2011, 21: 17–24

    Article  Google Scholar 

  32. Leckband D. Measuring the Forces That Control Protein Interactions[J]. Annu. Rev. Biophys. Biomol. Struct., 2000, 29: 1–26

    Article  Google Scholar 

  33. De M, You CC, Srivastava S, et al. Biomimetic Interactions of Proteins with Functionalized Nanoparticles: a Thermodynamic Study[J]. J. Am. Chem. Soc., 2007, 129: 10747–10753

    Article  Google Scholar 

  34. Yamasaki K, Maruyama T, Takadate A, et al. Characterization of Site I of Human Serum Albumin Using Spectroscopic Analyses: Locational Relations between Regions Ib and Ic of Site I[J]. J Pharm. Sci., 2004, 93: 3004–3012

    Article  Google Scholar 

  35. Ross PD, Subramanian S. Thermodynamics of Protein Association Reactions: Forces Contributing to Stability[J]. Biochem., 1981, 20: 3096–3102

    Article  Google Scholar 

  36. Yamasaki K, Maruyama T, Kragh-Hansen U, et al. Characterization of Site I on Human Serum Albumin: Concept about the Structure of a Drug Binding Site[J]. Biochimica et Biophysica Acta (BBA) -Protein Struct. M., 1996, 1295: 147–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liang  (梁峰).

Additional information

Funded by the China Scholarship Council and Hubei Provincial Department of Education of China (201308420539), the Science and Technology Research Program of Hubei Provincial Department of Education of China (Q20131105, B2016008), the Coal Conversion and New Carbon Materials Hubei Key Laboratory(Wuhan University of Science and Technology (WKDM201505, WKDM201507) and the Wuhan University of Science and Technology Foundation of China (z00980, 2014XG006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Peng, Z., Shen, W. et al. Microwave synthesis of CdTe/TGA quantum dots and their thermodynamic interaction with bovine serum albumin. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 1408–1414 (2016). https://doi.org/10.1007/s11595-016-1546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1546-x

Key words

Navigation