Skip to main content
Log in

Two classes of exact solutions in the linear elastodynamics of transversely isotropic solids

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Due to the formal resemblance of some models for the Cauchy stress tensor of elastic solids and viscous fluids, some classes of exact solutions for the equations governing the flows in Navier–Stokes fluids have been generalized to linear and nonlinear elastodynamics. In this paper, we study the conditions under which two special classes of generalized Beltrami flows, the vortices in lattice form and Kelvin’s cat’s eye solutions, are solutions of the equations governing the motions in a linearly elastic transversely isotropic solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that since \(\varvec{B}\) and \(\varvec{D}\) have different physical dimensions, the infinitesimal shear modulus in (2) and the viscosity in (3) have different physical dimensions although they are usually denoted with the same greek letter (\(\mu \)).

References

  1. Heber, G., Leimanis, E.: The general problem of the motion of coupled rigid bodies about a fixed point. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 46(5), 332–333 (1966). https://doi.org/10.1002/zamm.19660460539

  2. Berker, R.: Intégration des équations du mouvement d’un fluide visqueux incompressible. Handbuch der Physik 3, 1–384 (1963). https://doi.org/10.1007/978-3-662-10109-4_1

    Article  MathSciNet  ADS  Google Scholar 

  3. Nemenyi, P.F.: Recent developments in inverse and semi-inverse methods in the mechanics of continua1. Adv. Appl. Mech. 2, 123–151 (1951)

    Article  MathSciNet  Google Scholar 

  4. Truesdell, C., Toupin, R.: The Classical Field Theories. Handbuch der Physik 2, 226–858 (1960). https://doi.org/10.1007/978-3-642-45943-6_2

    Article  ADS  Google Scholar 

  5. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, pp. 1–579. Springer, Berlin, Heidelberg (1992). https://doi.org/10.1007/978-3-662-13183-1_1

  6. Coleman, B.D., Truesdell, C.A.: Homogeneous motions of incompressible materials. Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik 45, 547–551 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  7. Pucci, E., Saccomandi, G.: Elliptical flows perturbed by shear waves. Ricerche Mat. 67, 509–524 (2018)

    Article  MathSciNet  Google Scholar 

  8. Holm, D.D.: Gyroscopic analog for collective motion of a stratified fluid. J. Math. Anal. Appl. 117(1), 57–80 (1986). https://doi.org/10.1016/0022-247X(86)90248-9

    Article  MathSciNet  Google Scholar 

  9. Craik, A.D.D.: Time-dependent solutions of the Navier–Stokes equations for spatially-uniform velocity gradients. Proc. R. Soc. Edinb. Sect. A Math. 124(1), 127–136 (1994). https://doi.org/10.1017/S0308210500029231

    Article  MathSciNet  Google Scholar 

  10. Rajagopal, K.R.: On a class of solutions in elastodynamics. In: Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 90A(2), 205–214 (1990)

  11. Rajagopal, K.R., Wineman, A.S.: New exact solutions in non-linear elasticity. Int. J. Eng. Sci. 23(2), 217–234 (1985). https://doi.org/10.1016/0020-7225(85)90076-X

    Article  Google Scholar 

  12. Berker, R.: A new solution of the Navier–Stokes equation for the motion of a fluid contained between two parallel plates rotating about the same axis. Arch. Mech. 31(2), 265–280 (1979)

    MathSciNet  Google Scholar 

  13. Fu, D., Rajagopal, K.R., Szeri, A.Z.: Non-homogeneous deformations in a wedge of Mooney–Rivlin material. Int. J. Non-Linear Mech. 25(4), 375–387 (1990). https://doi.org/10.1016/0020-7462(90)90026-6

    Article  Google Scholar 

  14. Taylor, G.I: LXXV. On the decay of vortices in a viscous fluid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 46(274), 671–674 (1923). https://doi.org/10.1080/14786442308634295

  15. Kelvin, W.T.: On a disturbing infinity in lord Rayleigh’s solution for waves in a plane vortex stratum. Nature 23, 45–46 (1880)

    Article  Google Scholar 

  16. Kaptsov, O.V.: New solutions for two-dimensional stationary Euler equations. Prikladnaia Matematika i Mekhanika 54, 409–415 (1990)

    ADS  Google Scholar 

  17. Spencer, A.J.M.: In: Spencer, A.J.M. (ed.) Constitutive Theory for Strongly Anisotropic Solids, pp. 1–32. Springer, Vienna (1984). https://doi.org/10.1007/978-3-7091-4336-0_1

  18. Coco, M., Saccomandi, G.: Superposing plane strain on anti-plane shear deformations in a special class of fiber-reinforced incompressible hyperelastic materials. Int. J. Solids Struct. 256, 111994 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111994

  19. Grine, F., Saccomandi, G., Arfaoui, M.: Elastic machines: a non standard use of the axial shear of linear transversely isotropic elastic cylinders. Int. J. Solids Struct. 185–186, 57–64 (2020). https://doi.org/10.1016/j.ijsolstr.2019.08.025

    Article  Google Scholar 

  20. Horgan, C.O., Murphy, J.G., Saccomandi, G.: The complex mechanical response of anisotropic materials in simple experiments. Int. J. Non-Linear Mech. 106, 274–279 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.05.025

    Article  ADS  Google Scholar 

  21. Destrade, M., Ogden, R.W., Saccomandi, G.: Small amplitude waves and stability for a pre-stressed viscoelastic solid. Z. Angew. Math. Phys. 60, 511–528 (2009). https://doi.org/10.1007/s00033-008-7147-6

    Article  MathSciNet  Google Scholar 

  22. Saccomandi, G., Speranzini, E., Zurlo, G.: Piezoelectric machines: achieving non-standard actuation and sensing properties in poled ceramics. Q. J. Mech. Appl. Math. 74(2), 159–172 (2021). https://doi.org/10.1093/qjmam/hbab002

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

GS and LV are supported by NextGenerationEU PRIN2022 grant no. 2022P5R22A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Saccomandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All the authors have equal contribution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal, K.R., Saccomandi, G. & Vergori, L. Two classes of exact solutions in the linear elastodynamics of transversely isotropic solids. Ricerche mat 73 (Suppl 1), 275–291 (2024). https://doi.org/10.1007/s11587-023-00845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-023-00845-2

Keywords

Mathematics Subject Classification

Navigation