Skip to main content
Log in

Boosting Zn anode reversibility via electrolyte solvation structure mediation by ethylene glycol monomethyl ether additive

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Aqueous zinc-ion batteries are considered promising energy storage devices due to their low cost, high capacity, and high safety. However, the application of aqueous zinc-ion batteries is subject to the limits of Zn anode reversibility, such as the formation of Zn dendrites, Zn anode corrosion, and hydrogen evolution reaction. In this study, we reported an electrolyte additive ethylene glycol monomethyl ether (MOE) with a modulated electrolyte solvation structure, which can suppress the growth of Zn dendrites and enhance the reversibility of Zn chemistry. The MOE molecular shows a higher electron cloud density of oxygen atoms, which enhances the strength of H–O covalent bonds. Therefore, MOE can break the interaction between H2O and H2O and the interaction between H2O and Zn2+. The solvation structure of Zn2+ is optimized to improve the reversibility of the Zn anode. As a consequence, the reversibility of Zn plating/stripping is promoted by 20% MOE-modified electrolyte with high CE of 99.4% at the current density of 1 mA cm−2, stably cycled for 2100 cycles. The Zn||Zn symmetrical cells can keep dendrite-free cycling for more than 4000 h in the same target electrolyte. In addition, the Zn||V2O5 cell can exhibit excellent long cycling stability for over 1000 cycles even at 5 A g−1 with the reversible capacity of 100 mAh g−1. This work provides a universal additive strategy to design versatile electrolytes for aqueous zinc-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Dai Y, Zhang C, Li J et al (2024) Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv Mater 2310645:1–9. https://doi.org/10.1002/adma.202310645

    Article  CAS  Google Scholar 

  2. Xie W, Zhu K, Yang H, Yang W (2023) Advancements in achieving high reversibility of zinc anode for alkaline zinc-based batteries. Adv Mater 36:2306154. https://doi.org/10.1002/adma.202306154

    Article  CAS  Google Scholar 

  3. Chen H, Li X, Fang K et al (2023) Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv Energy Mater 13:2302187. https://doi.org/10.1002/aenm.202302187

    Article  CAS  Google Scholar 

  4. Wei T, Ren Y, Wang Y et al (2023) Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS Nano 17:3765–3775. https://doi.org/10.1021/acsnano.2c11516

    Article  CAS  PubMed  Google Scholar 

  5. Cao Q, Gao Y, Pu J et al (2023) Gradient design of imprinted anode for stable Zn-ion batteries. Nat Commun 14:1–11. https://doi.org/10.1038/s41467-023-36386-3

    Article  CAS  Google Scholar 

  6. Yang Q, Li Q, Liu Z et al (2020) Dendrites in Zn-based batteries. Adv Mater 32:1–32. https://doi.org/10.1002/adma.202001854

    Article  CAS  Google Scholar 

  7. Bai S, Huang Z, Liang G et al (2023) Electrolyte additives for stable Zn anodes. Advanced Science 2304549:1–20. https://doi.org/10.1002/advs.202304549

    Article  CAS  Google Scholar 

  8. Xu W, Li J, Liao X et al (2023) Fluoride-rich, organic-inorganic gradient interphase enabled by sacrificial solvation shells for reversible zinc metal batteries. J Am Chem Soc 145:22456–22465. https://doi.org/10.1021/jacs.3c06523

    Article  CAS  PubMed  Google Scholar 

  9. Lu H, Zhang D, Jin Q et al (2023) Gradient electrolyte strategy achieving long-life zinc anodes. Adv Mater 35:1–37. https://doi.org/10.1002/adma.202300620

    Article  CAS  Google Scholar 

  10. Ma L, Vatamanu J, Hahn NT et al (2022) Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc Natl Acad Sci U S A 119:1–9. https://doi.org/10.1073/pnas.2121138119

    Article  CAS  Google Scholar 

  11. Han M, Li TC, Chen X, Yang HY (2023) Electrolyte modulation strategies for low-temperature Zn batteries. Small 2304901:1–16. https://doi.org/10.1002/smll.202304901

    Article  CAS  Google Scholar 

  12. Meng C, He WD, Tan H et al (2023) A eutectic electrolyte for an ultralong-lived Zn//V2O5 cell: an in situ generated gradient solid-electrolyte interphase. Energy Environ Sci 16:3587–3599. https://doi.org/10.1039/d3ee01447a

    Article  CAS  Google Scholar 

  13. Li D, Cao L, Deng T et al (2021) Design of a solid electrolyte interphase for aqueous Zn batteries. Angew Chem Int Ed 60:13035–13041. https://doi.org/10.1002/anie.202103390

    Article  CAS  Google Scholar 

  14. Zeng X, Xie K, Liu S et al (2021) Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm-2 and 30 mA h cm-2. Energy Environ Sci 14:5947–5957. https://doi.org/10.1039/d1ee01851e

    Article  CAS  Google Scholar 

  15. Di S, Nie X, Ma G et al (2021) Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Storage Mater 43:375–382. https://doi.org/10.1016/j.ensm.2021.09.021

    Article  Google Scholar 

  16. Liu C, Luo Z, Deng W et al (2021) Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett 6:675–683. https://doi.org/10.1021/acsenergylett.0c02569

    Article  CAS  Google Scholar 

  17. Wang SB, Ran Q, Yao RQ et al (2020) Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-15478-4

    Article  CAS  Google Scholar 

  18. Wang F, Zhang J, Lu H et al (2023) Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat Commun 14:1–10. https://doi.org/10.1038/s41467-023-39877-5

    Article  CAS  Google Scholar 

  19. Wang F, Sun W, Shadike Z et al (2018) How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew Chem 130:12154–12157. https://doi.org/10.1002/ange.201806748

    Article  Google Scholar 

  20. Chen H, Dai C, Xiao F et al (2022) Reunderstanding the reaction mechanism of aqueous Zn-Mn battery in sulfate electrolytes: role of the zinc sulfate hydroxide. Adv Mater 34:2109092. https://doi.org/10.1002/adma.202109092

    Article  CAS  Google Scholar 

  21. Xie J, Liang Z, Lu YC (2020) Molecular crowding electrolytes for high-voltage aqueous batteries. Nat Mater 19:1006–1011. https://doi.org/10.1038/s41563-020-0667-y

    Article  CAS  PubMed  Google Scholar 

  22. Qin Y, Liu P, Zhang Q et al (2020) Advanced filter membrane separator for aqueous zinc-ion batteries. Small 16:1–10. https://doi.org/10.1002/smll.202003106

    Article  CAS  Google Scholar 

  23. Fang Y, Xie X, Zhang B et al (2021) Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv Funct Mater 32:2109671. https://doi.org/10.1002/adfm.202109671

    Article  CAS  Google Scholar 

  24. Cao P, Zhou H, Zhou X et al (2022) Stabilizing zinc anodes by a cotton towel separator for aqueous zinc-ion batteries. ACS Sustain Chem Eng 10:8350–8359. https://doi.org/10.1021/acssuschemeng.2c01133

    Article  CAS  Google Scholar 

  25. Wu B, Wu Y, Lu Z et al (2021) A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J Mater Chem A 9:4734–4743. https://doi.org/10.1039/d0ta11841a

    Article  CAS  Google Scholar 

  26. Zhang F, Huang F, Huang R et al (2023) Hierarchical porous separator with excellent isotropic modulus enabling homogeneous Zn2+ flux for stable aqueous Zn battery. Sci China Mater 66:982–991. https://doi.org/10.1007/s40843-022-2239-8

    Article  CAS  Google Scholar 

  27. Wang Y, Wang T, Bu S et al (2023) Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat Commun 14:1–13. https://doi.org/10.1038/s41467-023-37524-7

    Article  CAS  Google Scholar 

  28. Zhu J, Yang M, Hu Y et al (2023) The construction of binary phase electrolyte interface for highly stable zinc anodes. Adv Mater 36:2304426. https://doi.org/10.1002/adma.202304426

    Article  CAS  Google Scholar 

  29. You C, Wu R, Yuan X et al (2023) An inexpensive electrolyte with double-site hydrogen bonding and regulated Zn 2+ Solvation structure for aqueous Zn-ion batteries capable of high-rate and ultra-long low-temperature operation. Energy Environ Sci 16:5096–5107. https://doi.org/10.1039/d3ee01741a

    Article  CAS  Google Scholar 

  30. Han D, Sun T, Zhang RC et al (2022) Eutectic electrolytes with doubly-bound water for high-stability zinc anodes. Adv Funct Mater 32:2209065. https://doi.org/10.1002/adfm.202209065

    Article  CAS  Google Scholar 

  31. Cai Z, Wang J, Lu Z et al (2022) Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew Chem Int Ed 61:1–8. https://doi.org/10.1002/anie.202116560

    Article  CAS  Google Scholar 

  32. Wang F, Borodin O, Gao T et al (2018) Highly reversible zinc metal anode for aqueous batteries. Nat Mater 17:543–549. https://doi.org/10.1038/s41563-018-0063-z

    Article  CAS  PubMed  Google Scholar 

  33. Zhang C, Shin W, Zhu L et al (2021) The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 3:339–348. https://doi.org/10.1002/cey2.70

    Article  CAS  Google Scholar 

  34. Deng W, Xu Z, Wang X (2022) High-donor electrolyte additive enabling stable aqueous zinc-ion batteries. Energy Storage Mater 52:52–60. https://doi.org/10.1016/j.ensm.2022.07.032

    Article  Google Scholar 

  35. Feng X, Li P, Yin J et al (2023) Enabling highly reversible Zn anode by multifunctional synergistic effects of hybrid solute additives. ACS Energy Lett 8:1192–1200. https://doi.org/10.1021/acsenergylett.2c02455

    Article  CAS  Google Scholar 

  36. Hao J, Yuan L, Ye C et al (2021) Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed 60:7366–7375. https://doi.org/10.1002/anie.202016531

    Article  CAS  Google Scholar 

  37. Gomez Vazquez D, Pollard TP, Mars J et al (2023) Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries. Energy Environ Sci 16:1982–1991. https://doi.org/10.1039/d3ee00205e

    Article  CAS  Google Scholar 

  38. Tang X, Wang P, Bai M et al (2021) Unveiling the reversibility and stability origin of the aqueous V2O5–Zn batteries with a ZnCl2 “water-in-salt” electrolyte. Adv Sci 8:2–11. https://doi.org/10.1002/advs.202102053

    Article  CAS  Google Scholar 

  39. Wang X, Li Y, Das P et al (2020) Layer-by-layer stacked amorphous V2O5/Graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Mater 31:156–163. https://doi.org/10.1016/j.ensm.2020.06.010

    Article  CAS  Google Scholar 

  40. Li Z, Ganapathy S, Xu Y et al (2019) Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv Energy Mater 9:1–10. https://doi.org/10.1002/aenm.201900237

    Article  CAS  Google Scholar 

  41. Wu M, Wang X, Zhang F et al (2024) Highly reversible and stable Zn metal anodes realized using a trifluoroacetamide electrolyte additive. Energy Environ Sci 17:619–629. https://doi.org/10.1039/d3ee03040g

    Article  CAS  Google Scholar 

  42. Hao J, Yuan L, Johannessen B et al (2021) Studying conversion mechanism to broaden cathode options in aqueous Zn-ion batteries. Angew Chem Int Ed 60:25114–25121. https://doi.org/10.1002/anie.202111398

    Article  CAS  Google Scholar 

  43. Miao Z, Liu Q, Wei W et al (2022) Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 97:107145. https://doi.org/10.1016/j.nanoen.2022.107145

    Article  CAS  Google Scholar 

  44. Wu F, Chen Y, Chen Y et al (2022) Achieving highly reversible zinc anodes via N, N-dimethylacetamide enabled Zn-ion solvation regulation. Small 18:1–9. https://doi.org/10.1002/smll.202202363

    Article  CAS  Google Scholar 

  45. Wei T, Peng Y, Mo L et al (2022) Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries. Sci China Mater 65:1156–1164. https://doi.org/10.1007/s40843-021-1841-5

    Article  CAS  Google Scholar 

  46. Qin R, Wang Y, Zhang M et al (2021) Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80:105478. https://doi.org/10.1016/j.nanoen.2020.105478

    Article  CAS  Google Scholar 

  47. Yang H, Qiao Y, Chang Z et al (2021) Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv Mater 33:2102415. https://doi.org/10.1002/adma.202102415

    Article  CAS  Google Scholar 

  48. Wang X, Tian Y, Yang K et al (2024) Sandwich-structured anode enables high stability and enhanced zinc utilization for aqueous Zn-ion batteries. Energy Storage Mater 64:103078. https://doi.org/10.1016/j.ensm.2023.103078

    Article  Google Scholar 

  49. Ciurduc DE, de la Cruz C, Patil N et al (2023) An improved PEG-based molecular crowding electrolyte using Zn(TFSI)2 vs. Zn(OTf)2 for aqueous Zn//V2O5 battery. Mater Today Energy 36:101339. https://doi.org/10.1016/j.mtener.2023.101339

  50. Hu P, Zhu T, Ma J et al (2019) Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries. Chem Commun 55:8486–8489. https://doi.org/10.1039/c9cc04053f

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Jiangsu Province (BK20220651), Natural Science Foundation of the Jiangsu Higher Education Institution of China (21KJB480010), and National Natural Science Foundation of China (51672114). The work was also supported by the Scientific Research Foundation of Jiangsu University of Science and Technology (1112932004).

Author information

Authors and Affiliations

Authors

Contributions

XG Li conceived and wrote the main manuscript text; H Tu completed the experiment, physical characterization, and electrochemical tests; R Wu, ZN Wang, and YH Zhou assisted the experiment and tests; YJ Zong, YK Lu, L Qian, YX Zhang, and SY Song provided suggestions for the manuscript; CF Meng provided suggestions for the FTIR and SEM characterization of samples; AH Yuan provided funding and suggestions for the revisions. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Xiaogang Li or Aihua Yuan.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2441 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tu, H., Wu, R. et al. Boosting Zn anode reversibility via electrolyte solvation structure mediation by ethylene glycol monomethyl ether additive. Ionics 30, 2665–2676 (2024). https://doi.org/10.1007/s11581-024-05486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05486-5

Keywords

Navigation