Skip to main content
Log in

Open-framework iron(II) phosphate-oxalate as anode material for Li-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The iron(II) phosphate-oxalate compound, namely (C4H12N2)[Fe4(HPO4)2(C2O4)3] (abbreviated as FPC), was synthesized and studied as anode material for lithium-ion batteries (LIBs). The structure of FPC was characterized by single-crystal X-ray diffraction. The FPC anode material gives a reversible capacity of 966.1 mAh g−1 after 400 cycles and good rate capability of 383.1 mAh g−1 at 2 A g−1. The lithium storage mechanism for FPC was analyzed. The results suggest that the electrochemical activity of FPC arises from the conversion reaction accompanied by the formation of Li3PO4 after lithiation. The in situ generation of ion conductive Li3PO4 and the redox process between FePO4 and Fe contribute to the good rate capability and cycling stability of the FPC anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  PubMed  Google Scholar 

  2. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  PubMed  Google Scholar 

  3. Fang S, Bresser D, Passerini S (2019) Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater 10:1902485

    Article  Google Scholar 

  4. Pei M, Qi Z, Wu Y, Mei D, Wen S (2021) Facile synthesis and electrochemical performance of a copper-doped anode material Cu0.5Ni0.5Co2O4 for lithium-ion batteries. Ionics 27:2803–2812

    Article  CAS  Google Scholar 

  5. Huang M-X, Sun Y-H, Guan D-C, Nan J-M, Cai Y-P (2020) Hydrothermal synthesis of mesoporous SnO2 as a stabilized anode material of lithium-ion batteries. Ionics 25:5745–5757

    Article  Google Scholar 

  6. Yang R, Wang Y, Deng Q, Hui P, Luo Z, Yan Y, Wang L (2022) Metal-organic framework derived Fe3O4/C/rGO composite as an anode material in lithium-ion batteries. Ionics 28:2143–2154

    Article  Google Scholar 

  7. Liu H, He Y, Gao Z, Zhang G, Cao K, Jing Q-S (2022) Self-induced matrix with Li-ion storage activity in ultrathin CuMnO2 nanosheets electrode. J Colloid Interface Sci 606:1101–1110

    Article  CAS  PubMed  Google Scholar 

  8. Yu S-H, Feng X, Zhang N, Seok J, Abruña HD (2018) Understanding conversion-type electrodes for lithium rechargeable batteries. Acc Chem Res 51:273–281

    Article  CAS  PubMed  Google Scholar 

  9. Cao K, Jin T, Yang L, Jiao L (2017) Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater Chem Front 1:2213–2242

    Article  CAS  Google Scholar 

  10. Park J-S, Mahadi NB, Yashiro H, Myung S-T (2016) Synthesis of LiVOPO4 by emulsion drying method for use as an anode material for rechargeable lithium batteries. ACS Appl Mater Interfaces 8:25856–25862

    Article  CAS  PubMed  Google Scholar 

  11. Wen B, Guo R, Liu X, Luo W, He Q, Niu C, Meng J, Li Q, Zhao Y, Mai L (2021) Niobium oxyphosphate nanosheet assembled two-dimensional anode material for enhanced lithium storage. J Energy Chem 53:268–275

    Article  CAS  Google Scholar 

  12. Hu P, Ma J, Wang T, Qin B, Zhang C, Shang C, Zhao J, Cui G (2015) NASICON-structured NaSn2(PO4)3 with excellent high-rate properties as anode material for lithium ion batteries. Chem Mater 27:6668–6674

    Article  CAS  Google Scholar 

  13. Aziam H, Tamraoui Y, Ma L, Amine R, Wu T, Manoun B, Xu GL, Amine K, Alami J, Saadoune I (2018) Mechanism of the first lithiation/delithiation process in the anode material CoFeOPO4@C for Li-ion batteries. J Phys Chem C 122:7139–7148

    Article  CAS  Google Scholar 

  14. Yang Y, Wang B, Zhu J, Zhou J, Xu Z, Fan L, Zhu J, Podila R, Rao AM, Lu B (2016) Bacteria absorption-based Mn2P2O7-carbon@reduced graphene oxides for high-performance lithium-ion battery anodes. ACS Nano 10:5516–5524

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, Han Y, Zheng J, Zhang J, Shen C, Ming L, Yuan X, Li H (2014) VOPO4 nanosheets as anode materials for lithium-ion batteries. Chem Commun 50:11132–11134

    Article  CAS  Google Scholar 

  16. Hu L, Zheng S, Cheng S, Chen Z, Huang B, Liu Q, Xiao S, Yang J, Chen Q (2019) CrPO4/C composite as a novel anode material for lithium-ion batteries. J Power Sources 441:227180

    Article  CAS  Google Scholar 

  17. Hu L, Cheng W, Fqeng C (2022) Synthesis and electrochemical properties of SbPO4/C as a novel anode for lithium battery. Ionics 28:4495–4500

    Article  CAS  Google Scholar 

  18. Pan M-Y, Lu S-T, Li Y-Y, Li C, Cao K-Z, Fan Y (2023) Copper hydroxyphosphate Cu2(OH)PO4 as conversion-type anode material for lithium-ion batteries. Ionics 29:2209–2215

    Article  CAS  Google Scholar 

  19. Lu S-T, Li Y-Y, Zou G-D, Cao K, Fan Y (2023) Mixed polyanionic manganese(II) phosphate-oxalate compound as anode material for Li-ion batteries. J Solid State Chem 325:124145

    Article  CAS  Google Scholar 

  20. Nagarathinam M, Saravanan K, Phua EJH, Reddy MV, Chowdari BVR, Vittal JJ (2012) Redox-active metal-centered oxalato phosphate open framework cathode materials for lithium ion batteries. Angew Chem Int Ed 51:5866–5870

    Article  CAS  Google Scholar 

  21. Liao J, Hu Q, Mu J, He X, Wang S, Chen C (2019) A vanadium-based metal-organic phosphate framework material K2[(VO)2(HPO4)2(C2O4)] as a cathode for potassium-ion batteries. Chem Commun 55:659–662

    Article  CAS  Google Scholar 

  22. Pramanik A, Bradford AJ, Lee SL, Lightfoot P, Armstrong AR (2021) Na2Fe(C2O4)(HPO4): a promising new oxalate-phosphate based mixed polyanionic cathode for Li/Na ion batteries. J Phys Mater 4:024004

    Article  CAS  Google Scholar 

  23. Lin H-M, Lii K-H, Jiang Y-C, Wang S-L (1999) Organically templated inorganic/organic hybrid materials: synthesis and structures of (C4H12N2)[FeII4(C2O4)3(HPO4)2] and (C5H14N2)[FeIII2(C2O4)(HPO4)3]. Chem Mater 11:519–521

    Article  CAS  Google Scholar 

  24. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8

    Article  Google Scholar 

  25. Mphuthi LE, Erasmus E, Langner EHG (2021) Metal exchange of ZIF-8 and ZIF-67 nanoparticles with Fe(II) for enhanced photocatalytic performance. ACS Omega 6:31632–31645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu W, Li Y, Yao J, Zhu Q, Liu B (2023) Lithium storage behavior and mechanism of hexagonal FePO4/C composite as a novel anode material for lithium-ion batteries. J Alloys Compd 933:167766

    Article  CAS  Google Scholar 

  27. Li Y, Huang Y, Zheng Y, Huang R, Yao J (2019) Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries. J Power Sources 416:62–71

    Article  CAS  Google Scholar 

  28. Zhang C, Chen Z, Wang H, Nie Y, Yan J (2021) Porous Fe2O3 nanoparticles as lithium-ion battery anode materials. ACS Appl Nano Mater 4:8744–8752

    Article  CAS  Google Scholar 

  29. Ma J, Kong Y, Liu S, Li Y, Jiang J, Zhou Q, Huang Y, Han S (2020) Flexible phosphorus-doped graphene/metal-organic framework derived porous Fe2O3 anode for lithium-ion battery. ACS Appl Energy Mater 3:11900–11906

    Article  CAS  Google Scholar 

  30. Yang Y, He L, Lu J, Liu Z, Wang N, Su J, Long Y, Lv X, Wen Y (2019) Rapid assemble of MnC2O4 microtubes using a microchannel reactor and their use as an anode material for lithium-ion batteries. Electrochim Acta 321:134673

    Article  CAS  Google Scholar 

  31. Zhang Y-N, Li S-S, Kuai H-X, Long Y-F, Lv X-Y, Su J, Wen Y-X (2021) Proton solvent-controllable synthesis of manganese oxalate anode material for lithium-ion batteries. RSC Adv 11:23259–23269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ang WA, Gupta N, Prasanth R, Madhavi S (2012) High-performing mesoporous iron oxalate anodes for lithium-ion batteries. ACS Appl Mater Interfaces 4:7011–7019

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y-N, Zhou Y, Su J, Long Y-F, Lv X-Y, Kuai H-X, Wen Y-X (2022) Co-Fe hydroxyoxalate nanosheets chemically bonded with reduced graphene oxide as high-performance anode for lithium-ion batteries. Appl Surf Sci 585:152763

    Article  CAS  Google Scholar 

  34. Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH (2009) Templated nanocrystal-based porous TiO2 films for nextgeneration electrochemical capacitors. J Am Chem Soc 131:1802–1809

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  36. Guo X, Fang X, Mao Y, Wang Z, Wu F, Chen L (2011) Capacitive energy storage on Fe/Li3PO4 grain boundaries. J Phys Chem C 115:3803–3808

    Article  CAS  Google Scholar 

  37. Yao J, Jin T, Li Y, Xiao S, Huang B, Jiang J (2021) Electrochemical performance of Fe2(SO4)3 as a novel anode material for lithium-ion batteries. J Alloys Compd 886:161238

    Article  CAS  Google Scholar 

  38. Yang P, Zhang Z-W, Zou G-D, Huang Y, Li N, Fan Y (2020) Template thermolysis to create a carbon dots-embedded mesoporous titanium-oxo sulfate framework for visible-light photocatalytic applications. Inorg Chem 59:2062–2069

    Article  CAS  PubMed  Google Scholar 

  39. Han Q, Liu L, Yu H, Mu D, Huang R, Wang Y, Liu Y, Jiang F, Zhou Y (2022) Hierarchical dopamine-derived N-doped carbon-encapsulated iron oxide/sulfde hollow nanospheres for enhanced lithium-ion storage. Ionics 28:2143–2154

    Article  CAS  Google Scholar 

  40. Zhang SS, Xu K, Jow TR (2006) EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta 51:1636–1640

    Article  CAS  Google Scholar 

  41. Yao W, Che X, Li J, Zhao L, Yang H, Wang Y, Li C, Liao W (2021) Preparation of flower-like iron phosphate materials as a novel anode for dual-ion batteries. Mater Adv 2:6703–6712

    Article  CAS  Google Scholar 

  42. Zhang J, Zhang J, Liu J, Cao Y, Huang C, Ji G, Zhao Z, Ou X, Zhang B (2021) Environmentally phase-controlled stratagem for open framework pyrophosphate anode materials in battery energy storage. J Mater Chem C 9:9147–9157

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (U1804120).

Author information

Authors and Affiliations

Authors

Contributions

Si-Tong Lu performed material preparation, data collection, and analysis. Yan-Yan Li and Ya-Xuan Cai performed material characterization. Guo-Dong Zou analyzed the X-ray crystallography data. Yang Fan wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang Fan.

Ethics declarations

Ethical approval

This declaration is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, ST., Li, YY., Cai, YX. et al. Open-framework iron(II) phosphate-oxalate as anode material for Li-ion batteries. Ionics 29, 4585–4592 (2023). https://doi.org/10.1007/s11581-023-05186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05186-6

Keywords

Navigation