Skip to main content
Log in

A fundamental study on indium electrochemistry in molten NaCl-KCl eutectic: toward new technology development for indium secondary resources recycling

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a fundamental study on the electrochemical behavior of indium on a molybdenum electrode in the molten NaCl-KCl eutectic system at 750 °C was carried out. A variety of transient electrochemical techniques such as cyclic voltammetry, chronopotentiometry, square wave voltammetry, and linear sweep voltammetry were utilized to clarify the redox mechanism of indium in the molten melt. The results showed that the reduction of In(III) to metallic In is a diffusion-controlled one-step process of reversibility. The diffusion coefficient of In(III) in the eutectic NaCl-KCl system at 750 °C was evaluated by cyclic voltammetry and chronopotentiometry, and the results obtained by the two electrochemical methods accord well with each other, as to be approximately 1.05×10−5 and 3.7×10−5 cm2/s, respectively. This study aims to provide a theoretical basis for the development of an efficient and cost-effective process for indium secondary resources recycling on the basis of molten salt electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Frohlich P, Lorenz Y, Martin G, Brett B, Bertau M (2017) Valuable metals recovery processes, current trends, and recycling strategies. Angew Chem Int Ed 56:2544–2580

    Article  Google Scholar 

  2. Silveira AVM, Fuchs MS, Pinheiro DK, Tanabe EH, Bertuol DA (2015) Recovery of indium from LCD screens of discarded cell phones. Waste Manag 45:334–342

    Article  CAS  PubMed  Google Scholar 

  3. Geological Survey US (2020) Indium. Mineral Commodity Summaries

    Google Scholar 

  4. European-Commission (2017) Study on the review of the list of critical raw materials. Critical Raw Materials Factsheets Publications Office of the European Union, Luxembourg

    Google Scholar 

  5. Zeng X, Wang F, Sun X, Li J (2015) Recycling indium from scraped glass of liquid crystal display: process optimizing and mechanism exploring. ACS Sustain Chem Eng 3:1306–1312

    Article  CAS  Google Scholar 

  6. Xu L, Xiong Y, Meng J, Wang J, Hua Z, Tian Y, You J, Zhao Z (2021) Redox behavior of indium in molten chlorides. Trans Nonferrous Metals Soc China 31:1496–1505

    Article  CAS  Google Scholar 

  7. Alfantazi AM, Moskalyk RR (2003) Processing of indium: a review. Miner Eng 16:687–694

    Article  CAS  Google Scholar 

  8. He Y, Ma E, Xu Z (2014) Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction. J Hazard Mater 268:185–190

    Article  CAS  PubMed  Google Scholar 

  9. Virolainen S, Ibana D, Paatero E (2011) Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy 107:56–61

    Article  CAS  Google Scholar 

  10. Xu L, Xiong Y, Wang L, Tian Y, Tong B, You J, Zhao Z (2021) A novel method for selective recovery of indium from end-of-life liquid crystal displays by 15-crown-5 ether and its derivatives. Hydrometallurgy 202:105601

    Article  CAS  Google Scholar 

  11. Akcila A, Agcasulua I, Swain B (2019) Valorization of waste LCD and recovery of critical raw material for circular economy: a review. Resour Conserv Recycl 149:622–637

    Article  Google Scholar 

  12. Jung C, Osako M (2007) Thermodynamic behavior of rare metals in the melting process of municipal solid waste (MSW) incineration residues. Chemosphere 69:279–288

    Article  CAS  PubMed  Google Scholar 

  13. Itoh S, Maruyama K (2011) Recoveries of metallic indium and tin from ITO by means of pyrometallurgy. High Temp Mater Process 30(4):317–322

    CAS  Google Scholar 

  14. Zhang K, Wu Y, Wang W, Li B, Zhang Y, Zuo T (2015) Recycling indium from waste LCDs: a review. Resour Conserv Recycl 104:276–290

    Article  CAS  Google Scholar 

  15. Debnath B, Chowdhury R, Ghosh SK (2018) Sustainability of metal recovery from E-waste. Front Environ Sci Eng 12(6):2

    Article  CAS  Google Scholar 

  16. Kamberović Ž, Ranitović M, Korać M, Andjić Z, Gajić N, Djokić J, Jevtić S (2018) Hydrometallurgical process for selective metals recovery from waste-printed circuit boards. Metals 8:441

    Article  Google Scholar 

  17. He J, Hua Z, Liu H, Xu L, He S, Yang Y, Zhao Z (2018) Redox behavior of yttrium and electrochemical formation of Y-Al alloys in molten chlorides. J Electrochem Soc 165(11):E598–E603

    Article  CAS  Google Scholar 

  18. Zhu Z, Liu H, Chen J, Kong H, Xu L, Hua Z, Zhao Z (2020) Electrochemical behavior and electrolytic preparation of lead in eutectic NaCl-KCl melts. Trans Nonferrous Metals Soc China 30:2568–2576

    Article  CAS  Google Scholar 

  19. Haarberg GM, Qin B, Martinez AM (2017) Electrodeposition of indium and tin from molten chloride electrolytes. ECS Trans 77:1015–1028

    Article  CAS  Google Scholar 

  20. Laitinen HA, Liu CH (1958) An electromotive force series in molten lithium chloride-potassium chloride eutectic. J Am Chem Soc 80(5):1015–1020

    Article  CAS  Google Scholar 

  21. Laitinen HA, Liu CH, Ferguson WS (1958) Polarography of metal ions in fused lithium chloride-potassium chloride eutectic. Anal Chem 30(7):1266–1270

    Article  CAS  Google Scholar 

  22. Shafir JM, Plambeck JA (1970) Gallium and indium electrode potentials in fused LiCl-KCl eutectic. Can J Chem 48(13):2131–2132

    Article  CAS  Google Scholar 

  23. Bouteillon J, Jafarian M, Mohamedi M, Poignet JC (1991) Stability and electrochemical properties of mono and trivalent indium species in fused LiCl-KCl eutectic. In: Materials Science Forum (Vol. 73, pp. 327-332). Trans. Tech. Publications Ltd

    Google Scholar 

  24. Bouteillon J, Jafarian M, Poignet JC, Reydet A (1992) Electrochemical study of the properties of indium in the fused LiCl-KCl eutectic. J Electrochem Soc 139(1):1

    Article  CAS  Google Scholar 

  25. Mohamedi M, Bouteillon J, Poignet JC (1996) Electrochemical impedance spectroscopy study of indium couples in LiCl-KCl eutectic at 450 C. Electrochim Acta 41(9):1495–1504

    Article  CAS  Google Scholar 

  26. Castrillejo Y, Garcia MA, Barrado E, Pasquier P, Picard G (1995) Chemical and electrochemical behaviour of indium ions in the ZnCl2-2NaCl melt at 450° C. Electrochim Acta 40(17):2731–2738

    Article  CAS  Google Scholar 

  27. Castrillejo Y, Bermejo MR, Martínez AM, Abejón C, Sánchez S, Picard GS (1999) Electrochemical behaviour of indium ions in molten equimolar CaCl2-NaCl mixture at 550 °C. J Appl Electrochem 29(1):65–73

    Article  CAS  Google Scholar 

  28. Anders U, Plambeck JA (1969) Electrochemistry of copper, silver, gold, gallium, indium, and thallium in fused AlCl3-NaCl-KCl eutectic. Can J Chem 47(16):3055–3060

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Second ed. John Wiley & Sons Inc

    Google Scholar 

  30. Laity RW, Mcintyre JDE (1965) Chronopotentiometric diffusion coefficients in fused salts I: theory. J Am Chem Soc 87:3806–3812

    Article  CAS  Google Scholar 

  31. Tang H, Yan Y, Zhang M, Li X, Huang Y, Xu Y, Xue Y, Han W, Zhang Z (2013) AlCl3-aided extraction of praseodymium from Pr6O11 in LiCl-KCl eutectic melts. Electrochim Acta 88:457–462

    Article  CAS  Google Scholar 

  32. Liu K, Liu Y, Yuan L, Zhao X, Chai Z, Shi W (2013) Electroextraction of gadolinium from Gd2O3 in LiCl-KCl-AlCl3 molten salts. Electrochim Acta 109:732–740

    Article  CAS  Google Scholar 

  33. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706

    Article  CAS  Google Scholar 

  34. Berzins T, Delahay P (1953) Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75:555–559

    Article  CAS  Google Scholar 

  35. Kim DH, Bae SE, Park TH, Kim JY, Lee CW, Song K (2014) Real-time monitoring of metal ion concentration in LiCl-KCl melt using electrochemical techniques. Microchem J 114:261–265

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The State Key Laboratory of Refractories and Metallurgy (G202201), the National Natural Science Foundation of China (51904003), Anhui Provincial Department of Education (2022AH050332), and Key Research and Development Plan of Anhui Province (2022n07020004).

Author information

Authors and Affiliations

Authors

Contributions

Kai Zhang: methodology, validation, investigation, data curation, writing — original draft, and writing — review and editing. Liang Xu: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing — original draft, writing — review and editing, and funding acquisition. Dingwu Xia: methodology, validation, formal analysis, investigation, and data curation. Jinwei Meng: methodology, validation, investigation, and data curation. Zhuo Zhao: conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing — review and editing, supervision, project administration, and funding acquisition.

Corresponding authors

Correspondence to Liang Xu or Zhuo Zhao.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Xu, L., Xia, D. et al. A fundamental study on indium electrochemistry in molten NaCl-KCl eutectic: toward new technology development for indium secondary resources recycling. Ionics 29, 4379–4387 (2023). https://doi.org/10.1007/s11581-023-05145-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05145-1

Keywords

Navigation