Skip to main content

Advertisement

Log in

Zn-doped CoS2 nanospheres embedded on two dimensional reduced graphene oxide nanosheets as anode materials for enhanced sodium-ion hybrid capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium-ion hybrid capacitors (SICs) combine two merits of high energy density of batteries and superior power density of supercapacitors. Currently, metal sulfides are potential anode materials for SICs owing to their high theory specific capacity. Nevertheless, metal sulfides with low electronic conductivity and sluggish reaction kinetics suffer from inferior rate capability and poor circulation stability as anodes. Therefore, improving electronic conductivity and Na+ diffusion kinetics for metal sulfides are some effective promotion strategies. Herein the Zn-doped CoS2 nanospheres embedded on two dimensional reduced graphene oxide nanosheets (Zn-CoS2/rGO) composites are prepared by a simple hydrothermal method. The optimized Zn-CoS2/rGO deliver high specific capacity of 544.3 mA h g−1 at specific current of 0.1 A g−1 after 100 cycles. Impressively, Zn-CoS2/rGO display an excellent rate capability of 286.8 and 226.1 mA h g−1 at 2000 and 5000 mA g−1, respectively. Galvanostatic intermittent titration technique (GITT) analysis demonstrates that Zn-CoS2/rGO composites possess higher diffusion coefficient than CoS2/rGO. The SICs assembled by Zn-CoS2/rGO anodes and Walnut shells-derived porous carbon cathodes exhibit outstanding specific energy and power. This work confirms that Zn-CoS2/rGO are promising anodes to prepare high-performance SICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  2. N. Yabuuchi, K. Kubota, M. Dahbi, Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014)

    Article  CAS  Google Scholar 

  3. H.W. Zhang, M.X. Hu, Q. Lv, Z.H. Huang, F.Y. Kang, R.T. Lv, Advanced materials for sodium-ion capacitors with superior energy-power properties: progress and perspectives. Small 16, 1902843 (2020)

    Article  CAS  Google Scholar 

  4. A. Darwiche, C. Marino, M.T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 134, 20805 (2012)

    Article  CAS  Google Scholar 

  5. M. Hu, Y. Jiang, W. Sun et al., Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. ACS Appl. Mater. Interfaces 6, 19449 (2014)

    Article  CAS  Google Scholar 

  6. Y.C. Lu, C. Ma, J. Alvarado et al., Electrochemical properties of tin oxide anodes for sodium-ion batteries. J. Power Sour. 284, 287–295 (2015)

    Article  CAS  Google Scholar 

  7. J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier, Y. Yu, Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 8, 3531–3538 (2015)

    Article  CAS  Google Scholar 

  8. J. Fullenwarth, A. Darwiche, A. Soares et al., NiP3: a promising negative electrode for Li- and Na-ion batteries. J. Mater. Chem. A 2, 2050–2059 (2014)

    Article  CAS  Google Scholar 

  9. H. Kim, Z. Ding et al., Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6, 1600943 (2016)

    Article  CAS  Google Scholar 

  10. D.L. Chao, P. Liang, Z. Chen, L.Y. Bai, H. Shen, X.X. Liu, X.H. Xia, Y.L. Zhao, S.V. Savilov, J.Y. Lin, Z.X. Shen, Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016)

    Article  CAS  Google Scholar 

  11. F.P. Xiao, X.M. Yang, H.K. Wang, D.Y.W. Yu, A.L. Rogach, Hierarchical CoS2/N-doped carbon@MoS2 nanosheets with enhanced sodium storage performance. ACS Appl. Mater. Interfaces 12, 54644–54652 (2020)

    Article  CAS  Google Scholar 

  12. J. Zhang, D.W. Wang, W. Lv et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10, 370–376 (2017)

    Article  CAS  Google Scholar 

  13. Q. Zheng, W. Liu, X. Li, H. Zhang, K. Feng, H. Zhang, Facile construction of nanoscale laminated Na3V2(PO4)3 for a high-performance sodium ion battery cathode. J. Mater. Chem. A 4, 19170 (2016)

    Article  CAS  Google Scholar 

  14. M.G. Boebinger, M. Xu, X. Ma, H. Chen, R.R. Unocic, M.T. McDowell, Distinct nanoscale reaction pathways in a sulfide material for sodium and lithium batteries. J. Mater. Chem. A 5, 11701 (2017)

    Article  CAS  Google Scholar 

  15. X. Liang, M. Chen, G. Pan, J. Wu, X. Xia, New carbon for electrochemical energy storage and conversion. Funct. Mater. Lett. 12, 1950049 (2019)

    Article  CAS  Google Scholar 

  16. S. Deng, H. Zhu, G. Wang, M. Luo, S. Shen, C. Ai, L. Yang, S. Lin, Q. Zhang, L. Gu, B. Liu, Y. Zhang, Q. Liu, G. Pan, Q. Xiong, X. Wang, X. Xia, J. Tu, Boosting fast energy storage by synergistic engineering of carbon and deficiency. Nat. Commun. 11, 132 (2020)

    Article  CAS  Google Scholar 

  17. M. Lin, M.D. Deng, C.J. Zhou, Y.J. Shu, L.C. Yang, L.Z. Ouyang, Q.S. Gao, M. Zhu, Popcorn derived carbon enhances the cyclic stability of MoS2 as an anode material for sodium-ion batteries. Electrochim. Acta 309, 25–33 (2019)

    Article  CAS  Google Scholar 

  18. Z. Li, C. Bommier, Z.S. Chong, Z. Jian, T.W. Surta, X. Wang, Z. Xing, J.C. Neuefeind, W.F. Stickle, M. Dolgos, P.A. Greaney, X. Ji, Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy Mater. 7, 1602894 (2017)

    Article  CAS  Google Scholar 

  19. D. Xie, J. Zhang, G. Pan, H. Li, S. Xie, S. Wang, H. Fan, F. Cheng, X. Xia, Functionalized N-doped carbon nanotube arrays: novel binder-free anodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 11, 18662 (2019)

    Article  CAS  Google Scholar 

  20. Y.J. Fang, X.Y. Yu, X.W. Lou, Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 30, 1706668 (2018)

    Article  CAS  Google Scholar 

  21. H. Jia, C. Chen, O. Oladele, Y.G. Tang, G.Q. Li, X.W. Zhang, F. Yan, Cobalt doping of tin disulfide/reduced graphene oxide nanocomposites for enhanced pseudocapacitive sodium-ion storage. Commun. Chem. 1, 1–2 (2018)

    Article  CAS  Google Scholar 

  22. J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 30, 1704337 (2018)

    Article  CAS  Google Scholar 

  23. J.F. Ni, L. Li, Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 28, 1704880 (2018)

    Article  CAS  Google Scholar 

  24. Y. Liu, Z.H. Sun, K. Tan, D.K. Denis, J.F. Sun, L.W. Liang, L.R. Hou, C.Z. Yuan, Recent progress in flexible non-lithium based rechargeable batteries. J. Mater. Chem. A 7, 4353 (2019)

    Article  CAS  Google Scholar 

  25. H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)

    Article  CAS  Google Scholar 

  26. S.W. Ma, D.L. Zhao, N.N. Yao, L. Xu, Graphene/sulfur nanocomposite for high performance lithium-sulfur batteries. Adv. Mater. Res. 936, 369–373 (2014)

    Article  CAS  Google Scholar 

  27. Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017)

    Article  Google Scholar 

  28. P.P. Wang, Y.H. Gao, P.J. Li, X.F. Zhang, H.L. Niu, Z. Zheng, Doping Zn2+ in CuS nanoflowers into chemically homogeneous Zn0.49Cu0.50S1.01 superlattice crystal structure as high-efficiency n-type photoelectric semiconductors. ACS Appl. Mater. Interfaces 8, 15820–15827 (2016)

    Article  CAS  Google Scholar 

  29. Y. Ma, X.Y. Song, X. Ge, H.M. Zhang, G.Z. Wang, Y.X. Zhang, H.J. Zhao, In situ growth of a-Fe2O3 nanorod arrays on 3D carbon foam as an efficient binder free electrode for highly sensitive and specific determination of nitrite. J. Mater. Chem. A 9, 4726–4736 (2017)

    Article  CAS  Google Scholar 

  30. J. Xie, S. Liu, G. Cao, T. Zhu, X. Zhao, Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical Li-storage properties. Nano Energy 2, 49–56 (2013)

    Article  CAS  Google Scholar 

  31. L. Zhu, D. Susac, M. Teo, K.C. Wong, P.C. Wong, R.R. Parsons, D. Bizzotto, K.A.R. Mitchell, S.A. Campbell, Investigation of CoS2-based thin fifilms as model catalysts for the oxygen reduction reaction. J. Catal. 258, 235–242 (2008)

    Article  CAS  Google Scholar 

  32. D.C. Higgins, F.M. Hassan, M.H. Seo, J.Y. Choi, M.A. Hoque, D.U. Lee, Z. Chen, Shape-controlled octahedral cobalt disulfifide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J. Mater. Chem. A 3, 6340–6350 (2015)

    Article  CAS  Google Scholar 

  33. S. Bao, Y. Li, C. Li, Q. Bao, Q. Lu, J. Guo, Shape evolution and magnetic properties of cobalt sulfide. Cryst. Growth. Des. 8, 3745–3749 (2008)

    Article  CAS  Google Scholar 

  34. Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai, J. Bao, Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. J. Mater. Chem. A 3, 6787–6791 (2015)

    Article  CAS  Google Scholar 

  35. R.P. Zhang, Y. Wang, M.Q. Jia, J.J. Xu, E.Z. Pan, One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries. Appl. Surf. Sci. 437, 375–383 (2018)

    Article  CAS  Google Scholar 

  36. H. Tao, M. Zhou, K. Wang, S. Cheng, K. Jiang, Nickel sulfide nanospheres anchored on reduced graphene oxide in situ doped with sulfur as a high performance anode for sodium-ion batteries. J. Mater. Chem. A 5, 9322–9328 (2017)

    Article  CAS  Google Scholar 

  37. H. Wu, W.L. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi, H.N. Alshareef, Conductive metal-organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors. Adv. Energy Mater. 9, 1900482 (2019)

    Article  CAS  Google Scholar 

  38. Y. Zhang, N. Wang, C. Sun, Z. Lu, P. Xue, B. Tang, Z. Bai, S. Dou, 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem. Eng. J. 332, 370–376 (2018)

    Article  CAS  Google Scholar 

  39. Y. Zhao, Q. Pang, Y. Meng, Y. Gao, C. Wang, B. Liu, Y. Wei, F. Du, G. Chen, Selfassembled CoS nanoflowers wrapped in reduced graphene oxides as the highperformance anode materials for sodium-ion batteries. Chem. Eng. J. 23, 13150–13157 (2017)

    CAS  Google Scholar 

  40. Y. Ma, Y.J. Ma, D. Bresser, Y.C. Ji, D. Geiger, U. Kaiser, C. Streb, A. Varzi, S. Passerini, Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 12, 7220–7231 (2018)

    Article  CAS  Google Scholar 

  41. K. Zhang, M. Park, L. Zhou, G.H. Lee, J. Shin, Z. Hu, S.L. Chou, J. Chen, Y.M. Kang, Cobalt-doped FeS2 nanospheres with complete solid solubility as a high performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. 55, 12822–12826 (2016)

    Article  CAS  Google Scholar 

  42. X. Liu, K. Zhang, K. Lei, F. Li, Z. Tao, J. Chen, Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 9, 198–206 (2016)

    Article  CAS  Google Scholar 

  43. K. Zhang, Z. Hu, X. Liu, Z. Tao, J. Chen, FeSe2 Microspheres as a high performance anode material for Na-ion batteries. Adv. Mater. 27, 3305–3309 (2015)

    Article  CAS  Google Scholar 

  44. X. He, L.N. Bi, Y. Li, C.G. Xu, D.M. Lin, CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim. Acta 332, 135453 (2020)

    Article  CAS  Google Scholar 

  45. Y. Su, C.X. Wu, H. Li, F.J. Chen, Y. Guo, L. Yang, S.L. Xu, MoS2 nanoplatelets scaffolded within CoS2 nanobundles as anode nanomaterials for sodium-ion batteries. J. Alloys Compd. 845, 156229 (2020)

    Article  CAS  Google Scholar 

  46. Y.H. Zhang, N.N. Wang, C.H. Sun, Z.X. Lu, P. Xue, B. Tang, Z.C. Bai, S.X. Dou, 3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chem. Eng. J. 332, 370–376 (2018)

    Article  CAS  Google Scholar 

  47. Y.L. Xu, X.Y. Li, J.G. Wang, Q. Yu, X. Qian, L.Z. Chen, Y.Y. Dan, Fe-doped CoP flower-like microstructure on carbon membrane as integrated electrode with enhanced sodium ion storage. Chem. A Eur. J. 26, 1298–1305 (2020)

    Article  CAS  Google Scholar 

  48. T. Chen, Y. Ma, Q. Guo, M. Yang, H. Xia, A facile sol-gel route to prepare functional graphene nanosheets anchored with homogeneous cobalt sulfide nanoparticles as superb sodium-ion anodes. J. Mater. Chem. A 5, 3179–3185 (2017)

    Article  CAS  Google Scholar 

  49. K. Zhang, M. Park, L. Zhou, G.H. Lee, J. Shin, Z. Hu, S.L. Chou, J. Chen, Y.M. Kang, Co-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium‐ion batteries. Angew. Chem. Int. Ed. 55, 12822 (2016)

    Article  CAS  Google Scholar 

  50. S. Huang, S. Fan, L. Xie, Q. Wu, D. Kong, Y. Wang, Y.V. Lim, M. Ding, Y. Shang, S. Chen, H.Y. Yang, Promoting highly reversible sodium storage of iron sulfide hollow polyhedrons via cobalt incorporation and graphene wrapping. Adv. Energy Mater. 9, 1901584 (2019)

    Article  CAS  Google Scholar 

  51. D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S.V. Savilov, J. Lin, Z.X. Shen, Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016)

    Article  CAS  Google Scholar 

  52. P. Yu, C. Li, X. Guo, Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 118, 10616–10624 (2014)

    Article  CAS  Google Scholar 

  53. J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007)

    Article  CAS  Google Scholar 

  54. Y. Gong, J. Zhao, H. Wang, J. Xu, CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvo thermal method as anode materials for sodium ion batteries. Electrochim. Acta 292, 895–902 (2018)

    Article  CAS  Google Scholar 

  55. F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang, Y. Yu, Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28, 1800394 (2018)

    Article  CAS  Google Scholar 

  56. Q. Zhu, M. Wang, B. Nan, H. Shi, X. Zhang, Y. Deng, L. Wang, Q. Chen, Z. Lu, Core/shell nanostructured Na3V2(PO4)3/C/TiO2 composite nanofibers as a stable anode for sodium-ion batteries. J. Power Sour. 362, 147–159 (2017)

    Article  CAS  Google Scholar 

  57. Z.Q. Xu, M.Q. Wu, Z. Chen, C. Chen, J. Yang, T.T. Feng, E. Paek, D. Mitlin, Potassium ion storage: direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6, 1970075 (2019)

    Article  Google Scholar 

  58. C. Quan, R.R. Su, N.B. Gao, Preparation of activated biomass carbon from pine sawdust for supercapacitor and CO2 capture. Int. J. Energy Res. 44, 4335–4351 (2020)

    Article  CAS  Google Scholar 

  59. L.T. Yan, Y.L. Xu, P. Chen, S. Zhang, H.M. Jiang, L.Z. Yang, Y. Wang, L. Zhang, J.X. Shen, X.B. Zhao, L.Z. Wang, A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 32, 2003313 (2020)

    Article  CAS  Google Scholar 

  60. Z.J. Li, D.F. Guo, Y.Y. Liu, H.Y. Wang, L.L. Wang, Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem. Eng. J. 397, 125418 (2020)

    Article  CAS  Google Scholar 

  61. Y.E. Zhu, L.P. Yang, J. Sheng, Y.N. Chen, H.C. Gu, J.P. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for highperformance Na-ion capacitors. Adv. Energy Mater. 7, 1701222–1701230 (2017)

    Article  CAS  Google Scholar 

  62. H. Kim, M. Cho, M. Kim, K. Park, H. Gwon, Y. Lee, A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500–1506 (2013)

    Article  CAS  Google Scholar 

  63. S.M. Chen, G. Yang, Y. Jia, H.J. Zheng, Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 5, 1028–1034 (2017)

    Article  CAS  Google Scholar 

  64. S.M. Chen, G. Yang, H.J. Zheng, Aligned Ni-Co-Mn oxide nanosheets grown on conductive substrates as binder-free electrodes for high capacity electrochemical energy storage devices. Electrochim. Acta 220, 296–303 (2016)

    Article  CAS  Google Scholar 

  65. X. Tao, J. Du, Y. Sun, S. Zhou, Y. Xia, H. Huang, Y. Gan, W. Zhang, X. Li, Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv. Funct. Mater. 23, 4745–4751 (2013)

    CAS  Google Scholar 

  66. X.L. Deng, K.Y. Zou, R.Y. Momen, P. Cai, J. Chen, H.S. Hou, G.Q. Zou, X.B. Ji, High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66, 1858–1868 (2021)

    Article  CAS  Google Scholar 

  67. H. Zhang, R.J. Bai, C. Lu, J. Li, Y.G. Xu, L.B. Kong, M.C. Liu, RGO-modified CoWO4 nanoparticles as new high-performance electrode materials for sodium-ion storage. Ionics 25, 533–540 (2019)

    Article  CAS  Google Scholar 

  68. L.C. Huang, L.H. Zeng, J.H. Zhu, L.N. Sun, L. Yao, L.B. Deng, P.X. Zhang, Oxygen-vacancy-rich TiO2-coated carbon nanofibers for fast sodium storage in high-performance sodium-ion hybrid capacitors. J. Power Sour. 493, 229678 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51971104, 51762031) and the Key Research Program of Education Department of Gansu Province (GSSYLXM-03).

Author information

Authors and Affiliations

Authors

Contributions

Y-GX: Writing-original draft, investigation, data curation, project administration, validation. JL: Methodology, conceptualization, visualization, software, resources. L-BK: writing-reviewing and editing, funding acquisition, formal analysis, supervision.

Corresponding author

Correspondence to Ling-Bin Kong.

Ethics declarations

Conflict of interest

I declare the co-authors of this article have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 429.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YG., Liu, J. & Kong, LB. Zn-doped CoS2 nanospheres embedded on two dimensional reduced graphene oxide nanosheets as anode materials for enhanced sodium-ion hybrid capacitors. J Mater Sci: Mater Electron 33, 12819–12831 (2022). https://doi.org/10.1007/s10854-022-08227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08227-4

Navigation