Skip to main content
Log in

Investigation of oxygen reduction reaction activity on Pt-Fe/C catalyst

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, carbon-supported Pt-Fe catalysts (Pt-Fe/C) have been synthesized to determine the electrochemical activity toward oxygen reduction reaction (ORR). Compared to the Pt/C catalyst, the Pt-Fe/C catalyst showed around 23% less area-specific activity but 8.6% more mass activity. These findings suggest the possibility to develop a catalyst that is both more active and cost-efficient than platinum. Furthermore, Pt-Fe/C catalyst was successfully compared as a cost-effective catalyst alternative to the Pt/C catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data generated or analyzed and other related information during this study are available from the corresponding author upon reasonable request.

References

  1. Mohanapriya S, Gopi D (2021) Electro-oxidation of alcohols - recent advancements in synthesis and applications of palladium core-shell nanostructured model catalysts. Renew Sustain Energy Rev 148:111211. https://doi.org/10.1016/J.RSER.2021.111211

    Article  CAS  Google Scholar 

  2. Zhu C, Li H, Fu S, Du D, Lin Y (2016) Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev 45(3):517–531. https://doi.org/10.1039/c5cs00670h

    Article  CAS  PubMed  Google Scholar 

  3. Kang S, Yoo S, Lee J, Boo B, Yadav BC, Ryu H (2012) Synthesis and characterization of 20% Pt-Fe/C alloy as a cathode catalyst for oxygen reduction reaction PEMFCs. J New Mater Electrochem Syst 15(4):241–247. https://doi.org/10.14447/jnmes.v15i4.38

    Article  CAS  Google Scholar 

  4. Dai L, Xue Y, Qu L, Choi HJ, Baek JB (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892. https://doi.org/10.1021/cr5003563

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Zhu DD, Guo CX, Vasileff A, Qiao SZ (2017) Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv Energy Mater 7(23):1700518. https://doi.org/10.1002/AENM.201700518

    Article  Google Scholar 

  6. Shao M, Chang Q, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116(6):3594–3657. https://doi.org/10.1021/acs.chemrev.5b00462

    Article  CAS  PubMed  Google Scholar 

  7. Kulkarni A, Siahrostami S, Patel A, Nørskov JK (2018) Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 118(5):2302–2312. https://doi.org/10.1021/acs.chemrev.7b00488

    Article  CAS  PubMed  Google Scholar 

  8. Benson SM, Orr FM (2008) Sustainability and energy conversions. MRS Bull 33(4):297–302. https://doi.org/10.1557/MRS2008.257

    Article  CAS  Google Scholar 

  9. Greeley J, Markovic NM (2012) The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ Sci 5(11):9246–9256. https://doi.org/10.1039/C2EE21754F

    Article  CAS  Google Scholar 

  10. Yi L, Yu B, Yi W, Zhou Y, Ding R, Wang X (2018) Carbon-supported bimetallic platinum-iron nanocatalysts: application in direct borohydride/hydrogen peroxide fuel cell. ACS Sustain Chem Eng 6(7):8142–8149. https://doi.org/10.1021/acssuschemeng.7b04438

    Article  CAS  Google Scholar 

  11. Duchesne PN, Chen G, Zheng N, Zhang P (2013) Local structure, electronic behavior, and electrocatalytic reactivity of CO-reduced platinum-iron oxide nanoparticles. J Phys Chem C 117(49):26324–26333. https://doi.org/10.1021/jp4093496

    Article  CAS  Google Scholar 

  12. Kim Y, Jeffery AA, Min J, Jung N (2019) Modulating catalytic activity and durability of PtFe alloy catalysts for oxygen reduction reaction through controlled carbon shell formation. Nanomaterials 9(10). https://doi.org/10.3390/nano9101491

  13. Tian X, Lu XF, Xia BY, Lou XW (2020) (David), Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4(1):45–68. https://doi.org/10.1016/j.joule.2019.12.014

    Article  CAS  Google Scholar 

  14. Stacy J, Regmi YN, Leonard B, Fan M (2017) The recent progress and future of oxygen reduction reaction catalysis: a review. Renew Sustain Energy Rev 69:401–414. https://doi.org/10.1016/j.rser.2016.09.135

    Article  CAS  Google Scholar 

  15. Lai J, Huang B, Tang Y, Lin F, Zhou P, Chen X, Sun Y, Lv F, Guo S (2018) Barrier-free interface electron transfer on PtFe-Fe2C Janus-like nanoparticles boosts oxygen catalysis. Chem 4(5):1153–1166. https://doi.org/10.1016/j.chempr.2018.02.010

    Article  CAS  Google Scholar 

  16. Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chemie - Int Ed 52(33):8526–8544. https://doi.org/10.1002/anie.201207186

    Article  CAS  Google Scholar 

  17. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53(15):4937–4951. https://doi.org/10.1016/j.electacta.2008.02.012

    Article  CAS  Google Scholar 

  18. Wang DW, Su D (2014) Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci 7(2):576–591. https://doi.org/10.1039/c3ee43463j

    Article  CAS  Google Scholar 

  19. Ma R, Lin G, Zhou Y, Liu Q, Zhang T, Shan G, Yang M, Wang J (2019) A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. Npj Comput Mater 5(1). https://doi.org/10.1038/s41524-019-0210-3

  20. Al-Zoubi T, Zhou Y, Yin X, Janicek B, Sun C, Schulz CE, Zhang X, Gewirth AA, Huang P, Zelenay P, Yang H (2020) Preparation of nonprecious metal electrocatalysts for the reduction of oxygen using a low-temperature sacrificial metal. J Am Chem Soc 142(12):5477–5481. https://doi.org/10.1021/jacs.9b11061

    Article  CAS  PubMed  Google Scholar 

  21. Annuar AS, Rahman RA, Munir A, Murad A, El-enshasy HA, Illias R (2021) Pt-alloy decorated graphene as an efficient electrocatalyst for PEM fuel cell reactions. Carbohydrate Polymers 118159. https://doi.org/10.1016/j.carbpol.2021.118159

  22. Vinayan BP, Ramaprabhu S (2013) Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications. Nanoscale 5(11):5109–5118. https://doi.org/10.1039/c3nr00585b

    Article  CAS  PubMed  Google Scholar 

  23. Prabhudev S, Bugnet M, Zhu GZ, Bock C, Botton GA (2015) Surface segregation of Fe in Pt-Fe alloy nanoparticles: its precedence and effect on the ordered-phase evolution during thermal annealing. ChemCatChem 7(22):3655–3664. https://doi.org/10.1002/cctc.201500380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992. https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  PubMed  Google Scholar 

  25. Qiao H, Saray MT, Wang X, Xu S, Chen G, Huang Z, Chen C, Zhong G, Dong Q, Hong M, Xie H, Shahbazian-Yassar R, Hu L (2021) Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 15(9):14928–14937. https://doi.org/10.1021/acsnano.1c05113

    Article  CAS  PubMed  Google Scholar 

  26. Wang C, Chi M, Li D, Van Der Vliet D, Wang G, Lin Q, Mitchell JF, More KL, Markovic NM, Stamenkovic VR (2011) Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts. ACS Catalysis 1(10):1355–1359. https://doi.org/10.1021/cs200328z

    Article  CAS  Google Scholar 

  27. Yao X, Wei Y, Wang Z, Gan L (2020) Revealing the role of surface composition on the particle mobility and coalescence of carbon-supported Pt alloy fuel cell catalysts by in situ heating (S)TEM. ACS Catal 10(13):7381–7388. https://doi.org/10.1021/acscatal.0c01765

    Article  CAS  Google Scholar 

  28. Geng Y, Chen C, Gao Z, Feng X, Liu W, Li Y, Jin T, Shi Y, Zhang W, Bao M (2021) Unsupported nanoporous platinum-iron bimetallic catalyst for the chemoselective hydrogenation of halonitrobenzenes to haloanilines. ACS Appl Mater Interfaces 13(20):23655–23661. https://doi.org/10.1021/acsami.1c02734

    Article  CAS  PubMed  Google Scholar 

  29. Manivannan N, Balachandran VS, Vasantha VS (2021) Carbon supported platinum-molybdenum alloy nanoparticles for oxygen reduction reaction. Asian J Chem 33(5):1153–1158

    Article  CAS  Google Scholar 

  30. Simeonidis K, Mourdikoudis S, Tsiaoussis I, Dendrinou-Samara C, Angelakeris M, Kalogirou O (2008) Thermal treatment effects in the self-assembly of FePt nanoparticle arrays. J Magn Magn Mater 320(21):2665–2671. https://doi.org/10.1016/j.jmmm.2008.05.033

    Article  CAS  Google Scholar 

  31. Li Q, Zhu H, Zheng L, Liu H, Ren Y, Wang N, Chen J, Deng J, Xing X (2018) Local chemical strain in PtFe alloy nanoparticles. Inorg Chem 57(17):10494–10497. https://doi.org/10.1021/acs.inorgchem.8b01845

    Article  CAS  PubMed  Google Scholar 

  32. Sarkar A, Murugan AV, Manthiram A (2008) Synthesis and characterization of nanostructured Pd−Mo electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C 112:12037–12043. https://doi.org/10.1021/jp801824g

    Article  CAS  Google Scholar 

  33. Zuo Y, Sheng W, Tao W, Li Z (2022) Direct methanol fuel cells system–a review of dual-role electrocatalysts for oxygen reduction and methanol oxidation. J Mater Sci Technol 114:29–41. https://doi.org/10.1016/J.JMST.2021.10.031

    Article  CAS  Google Scholar 

  34. Xu H, Ci S, Ding Y et al (2019) Recent advances in precious metal-free bifunctional catalysts for electrochemical conversion systems. J Mater Chem A 7:8006–8029. https://doi.org/10.1039/C9TA00833K

    Article  CAS  Google Scholar 

  35. Kim C, Dionigi F, Beermann V et al (2019) Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv Mater 31:1–19. https://doi.org/10.1002/adma.201805617

    Article  CAS  Google Scholar 

  36. Ioroi T, Yasuda K (2005) Platinum-iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells. J Electrochem Soc 152:A1917–A1924. https://doi.org/10.1149/1.2006547

    Article  CAS  Google Scholar 

  37. Yu J, Chen Z, Zhong L et al (2023) Bamboo fiber–derived bifunctional electrocatalyst for rechargeable Zn-air batteries. Ionics (Kiel) 1:1–10. https://doi.org/10.1007/S11581-023-05009-8/FIGURES/4

    Article  Google Scholar 

  38. Yuhui C, Jinghao L, Lijuan Y et al (2023) The mechanism of high electrocatalytic activity and stability of the Pt3Co alloy embedded into the lattice by Au or Rh atoms. Ionics (Kiel) 29:1991–2003. https://doi.org/10.1007/S11581-023-04947-7/FIGURES/10

    Article  Google Scholar 

  39. Han JJ, Yin M, yu, (2023) Highly active and durable hollow NiPt/C as electrocatalysts for methanol electro-oxidation reaction. Ionics (Kiel) 29:2405–2415. https://doi.org/10.1007/S11581-023-04991-3/FIGURES/10

    Article  CAS  Google Scholar 

  40. Chu J, Gong J, Cheng Y, Xiong S (2023) Effect of calcination temperatures on the electrocatalytic performance of IrO2@RGO for oxygen evolution reaction. Ionics (Kiel) 29:2417–2425. https://doi.org/10.1007/S11581-023-04946-8/FIGURES/5

    Article  CAS  Google Scholar 

  41. Holewinski A, Idrobo JC (2014) Linic S (2014) High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction. Nat Chem 69(6):828–834. https://doi.org/10.1038/nchem.2032

    Article  CAS  Google Scholar 

  42. Huang Y, Tan Z, Wu H et al (2018) Fe@Pt core-shell nanoparticles as electrocatalyst for oxygen reduction reaction in acidic media. Ionics (Kiel) 24:229–236. https://doi.org/10.1007/S11581-017-2186-7/FIGURES/4

    Article  CAS  Google Scholar 

  43. Wang H, Luo W, Zhu L et al (2018) Synergistically enhanced oxygen reduction electrocatalysis by subsurface atoms in ternary PdCuNi alloy catalysts. Adv Funct Mater 28:1707219. https://doi.org/10.1002/ADFM.201707219

    Article  Google Scholar 

  44. Yuan C, Wu H Bin, Xie Y, et al Mixed transition-metal oxides: design, synthesis, and energy-related applications Angewandte Reviews. https://doi.org/10.1002/anie.201303971

  45. Jafari M, Gharibi H, Parnian MJ (2021) Metal organic framework derived iron-nitrogen doped porous carbon support decorated with cobalt and iron as efficient nanocatalyst toward oxygen reduction reaction. J Power Sources 499:229956. https://doi.org/10.1016/J.JPOWSOUR.2021.229956

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Arindam Sarkar, IIT Bombay, Mumbai, India, for providing the lab facilities and guidance.

Author information

Authors and Affiliations

Authors

Contributions

1.Natarajan Manivannan: Methodology, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – Original draft, Visualization

2.Adhidesh S. Kumawat: Methodology, Conceptualization, Validation, Investigation, Writing – Original Draft, Visualization

3.V. S. Vasantha – Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Supervision, Project administration

Corresponding author

Correspondence to V. S. Vasantha.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, N., Kumawat, A.S. & Vasantha, V.S. Investigation of oxygen reduction reaction activity on Pt-Fe/C catalyst. Ionics 29, 3703–3711 (2023). https://doi.org/10.1007/s11581-023-05073-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05073-0

Keywords

Navigation