Skip to main content
Log in

Electrodeposition of zinc from ethylene carbonate-ZnCl2 electrolyte system

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Zinc is a commonly used corrosion-resistant coating for steel surface protection. In this study, the ethylene carbonate-zinc chloride (EC-ZnCl2) electrolyte systems are selected for zinc electrodeposition, and their ionic structure and properties were studied. The corrosion resistance of the electrodeposited zinc coatings obtained from 4EC-ZnCl2, 3EC-ZnCl2, and 2EC-ZnCl2 systems was analyzed. Raman spectroscopic analysis shows that these EC-ZnCl2 systems contain [Zn2Cl6]2− species. The relationship between conductivity, viscosity, and density with the temperature of EC-ZnCl2 systems was provided. Scanning electron microscopy (SEM) and potentiodynamic polarization curve (Tafel) tests showed that when the deposition was carried out at –1.0 V and –1.2 V (vs. Ag/AgCl) for two hours, a uniform zinc coating with good corrosion resistance could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Wilcox GD, Gabe DR (1993) Electrodeposited zinc alloy coatings. Corros Sci 35(5–8):1251–1258. https://doi.org/10.1016/0010-938X(93)90345-H

    Article  CAS  Google Scholar 

  2. Cao L, Liao D, Sun F, Chen T, Teng Z, Tang Y (2018) Prediction of gas entrapment defects during zinc alloy high-pressure die casting based on gas-liquid multiphase flow model. Int J Adv Manuf Technol 94(1):807–815. https://doi.org/10.1007/s00170-017-0926-5

    Article  Google Scholar 

  3. Mahajan BK, Yu X, Shou W, Pan H, Huang X (2017) Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics. Small 13(17):1700065. https://doi.org/10.1002/smll.201700065

    Article  CAS  Google Scholar 

  4. Paatsch W (2010) Hydrogen embrittlement in electroplating: avoidance using pulse plating. Trans IMF 88(5):277–278. https://doi.org/10.1179/002029610X12791981507848

    Article  CAS  Google Scholar 

  5. Zhang XG (1996) Corrosion and electrochemistry of zinc, Springer Science & Business Media

  6. Maniam KK, Paul S (2020) Progress in electrodeposition of zinc and zinc nickel alloys using ionic liquids. Appl Sci 10(15):5321. https://doi.org/10.3390/app10155321

    Article  CAS  Google Scholar 

  7. Endres F (2002) Ionic liquids: solvents for the electrodeposition of metals and semiconductors. ChemPhysChem 3(2):144–154. https://doi.org/10.1002/1439-7641(20020215)3:2%3c144::aid-cphc144%3e3.0.co;2-#

    Article  CAS  Google Scholar 

  8. Chen YH, Yeh HW, Lo NC, Chiu CW, Sun IW, Chen PY (2017) Electrodeposition of compact zinc from the hydrophobic Brønsted acidic ionic liquid-based electrolytes and the study of zinc stability along with the acidity manipulation. Electrochim Acta 227:185–193. https://doi.org/10.1016/j.electacta.2017.01.013

    Article  CAS  Google Scholar 

  9. Hsieh YT, Tsai RW, Su CJ, Sun IW (2014) Electrodeposition of CuZn from chlorozincate ionic liquid: from hollow tubes to segmented nanowires. J Phys Chem C 118(38):22347–22355. https://doi.org/10.1021/jp506833s

    Article  CAS  Google Scholar 

  10. Pulletikurthi G, Ghazvini MS, Cui T, Borisenko N, Carstens T, Borodin A, Endres F (2017) Electrodeposition of zinc nanoplates from an ionic liquid composed of 1-butylpyrrolidine and ZnCl2: electrochemical, in situ AFM and spectroscopic studies. Dalton Trans 46(2):455–464. https://doi.org/10.1039/c6dt04149c

    Article  CAS  PubMed  Google Scholar 

  11. Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F (2016) Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew Chem Int Ed 55(8):2889–2893. https://doi.org/10.1002/anie.201509364

    Article  CAS  Google Scholar 

  12. Ren X, Tang J, Xu C, Wang S, Li J, Lu J, Hua Y, Zhang Q, Ru J (2020) Electrodeposition of single γ-phase Zn-Ni alloy from deep eutectic solvents using metal oxides as precursors. J Electrochem Soc 167(13):132505. https://doi.org/10.1149/1945-7111/abbcb0

    Article  CAS  Google Scholar 

  13. Xie X, Zou X, Lu X, Xu Q, Lu C, Chen C, Zhou Z (2017) Electrodeposition behavior and characterization of copper-zinc alloy in deep eutectic solvent. J Appl Electrochem 47(6):679–689. https://doi.org/10.1007/s10800-017-1069-y

    Article  CAS  Google Scholar 

  14. Xie X, Zou X, Lu X, Lu C, Cheng H, Xu Q, Zhou Z (2016) Electrodeposition of Zn and Cu–Zn alloy from ZnO/CuO precursors in deep eutectic solvent. Appl Surf Sci 385:481–489. https://doi.org/10.1016/j.apsusc.2016.05.138

    Article  CAS  Google Scholar 

  15. Fashu S, Gu CD, Wang XL, Tu JP (2014) Influence of electrodeposition conditions on the microstructure and corrosion resistance of Zn–Ni alloy coatings from a deep eutectic solvent. Surf Coat Technol 242:34–41. https://doi.org/10.1016/j.surfcoat.2014.01.014

    Article  CAS  Google Scholar 

  16. Marín-Sánchez M, Gracia-Escosa E, Conde A, Palacio C, García I (2018) Deposition of zinc–cerium coatings from deep eutectic ionic liquids. Materials 11(10):2035. https://doi.org/10.3390/ma11102035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alesary HF, Cihangir S, Ballantyne AD, Harris RC, Weston DP, Abbott AP, Ryder KS (2019) Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochim Acta 304:118–130. https://doi.org/10.1016/j.electacta.2019.02.090

    Article  CAS  Google Scholar 

  18. Alesary HF, Ismail HK, Shiltagh NM, Alattar RA, Ahmed LM, Watkins MJ, Ryder KS (2020) Effects of additives on the electrodeposition of ZnSn alloys from choline chloride/ethylene glycol-based deep eutectic solvent. J Electroanal Chem 874:114517. https://doi.org/10.1016/j.jelechem.2020.114517

    Article  CAS  Google Scholar 

  19. Ismail HK (2020) Electrodeposition of a mirror zinc coating from a choline chloride-ethylene glycol-based deep eutectic solvent modified with methyl nicotinate. J Electroanal Chem 876:114737. https://doi.org/10.1016/j.jelechem.2020.114737

    Article  CAS  Google Scholar 

  20. Bakkar A, Neubert V (2019) Electrodeposition of a mirror zinc coating from a choline chloride-ethylene glycol-based deep eutectic solvent modified with methyl nicotinate. J Alloys Compd 771:424–432. https://doi.org/10.1016/j.jelechem.2020.114737

    Article  CAS  Google Scholar 

  21. Zhu X, Xu C, Tang J, Hua Y, Zhang Q, Liu H, Wang X, Huang M (2019) Selective recovery of zinc from zinc oxide dust using choline chloride based deep eutectic solvents. Trans Nonferrous Met Soc China 29(10):2222–2228. https://doi.org/10.1016/S1003-6326(19)65128-9

    Article  CAS  Google Scholar 

  22. Wang X, Xu C, Liu H, Huang M, Ren X, Wang S, Hua Y, Zhang Q, Ru J (2020) Influence of chloride ion on zinc electrodeposition from choline chloride based deep eutectic solvent. Ionics 26(3):1483–1490. https://doi.org/10.1007/s11581-019-03293-x

    Article  CAS  Google Scholar 

  23. Bao Q, Zhao L, Jing H, Mao A (2018) Electrodeposition of zinc from low transition temperature mixture formed by choline chloride+ lactic acid. Mater Today Commun 14:249–253. https://doi.org/10.1016/j.mtcomm.2018.01.015

    Article  CAS  Google Scholar 

  24. Bernasconi R, Panzeri G, Firtin G, Kahyaoglu B, Nobili L, Magagnin L (2020) Electrodeposition of ZnNi alloys from choline chloride/ethylene glycol deep eutectic solvent and pure ethylene glycol for corrosion protection. J Phys Chem B 124(47):10739–10751. https://doi.org/10.1021/acs.jpcb.0c04784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He W, Shen L, Shi Z, Gao B, Hu X, Xu J, Wang Z (2016) Zinc electrodeposition from zinc oxide in the urea/1-ethyl-3-methylimidazolium chloride at 353 K. Electrochemistry 84(11):872–877. https://doi.org/10.5796/electrochemistry.84.872

    Article  CAS  Google Scholar 

  26. Liu A, Shi Z, Reddy RG (2017) Electrodeposition of zinc from zinc oxide in 2:1 urea/1-butyl-3-methylimidazolium chloride ionic liquid. J Electrochem Soc 164(9):D666. https://doi.org/10.1149/2.1501709jes

    Article  CAS  Google Scholar 

  27. Liu A, Shi Z, Reddy RG (2020) Mechanism study of Cu-Zn alloys electrodeposition in deep eutectic solvents. Ionics 26(6):3161–3172. https://doi.org/10.1007/s11581-019-03418-2

    Article  CAS  Google Scholar 

  28. He W, Chen P, Deng W, Shi Z, Gao B, Hu X, Xu J, Wang Z (2017) Electrosynthesis of Cu5Zn8 alloy in zinc oxide-urea/1-ethyl-3-methylimidazolium fluoride system at 353 K. Int J Electrochem Sci 12:1521–1534. https://doi.org/10.20964/2017.02.51

    Article  CAS  Google Scholar 

  29. Liu A, Guo M, Shi Z, Liu Y, Liu F, Hu X, Yang Y, Tao W, Wang Z (2021) Physicochemical properties of 1, 3-dimethyl-2-imidazolinone–ZnCl2 solvated ionic liquid and its application in zinc electrodeposition. Trans Nonferrous Met Soc China 31(3):832–841. https://doi.org/10.1016/S1003-6326(21)65542-5

    Article  Google Scholar 

  30. Yannopoulos SN (2003) Temperature induced changes on the structure and the dynamics of the “tetrahedral” glasses and melts of ZnCl2 and ZnBr2. J Chem Phys 118(7):3197–3214. https://doi.org/10.1063/1.1537246

    Article  CAS  Google Scholar 

  31. Babushkina OB, Volkov SV (1999) Raman spectroscopy of the heteronuclear complexes in the ZnCl2-CdCl2-Li, K/Cl and AlCl3-MgCl2-Li K/Cl melts. J Mol Liq 83(1–3):131–140. https://doi.org/10.1016/S0167-7322(99)00080-X

    Article  CAS  Google Scholar 

  32. Alves MB et al (2008) Raman spectroscopy of ionic liquids derived from 1-n-butyl-3-methylimidazolium chloride and niobium chloride or zinc chloride mixtures. J Raman Spectrosc: Int J Original Work Asp Raman Spectrosc, Incl High Order Process, also Brillouin Rayleigh Scattering 39(10):1388–1395. https://doi.org/10.1002/jrs.2009

    Article  CAS  Google Scholar 

  33. Yoshizawa M, Wu X, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of Δp K a from aqueous solutions. J Am Chem Soc 125:15411–15419. https://doi.org/10.1021/ja035783d

    Article  CAS  PubMed  Google Scholar 

  34. Xu H, Zhang D (2017) Viscosities and conductivities of [BMIM]Zn(Ac)xCly(x = 0, 1, 2, 3; y = 3, 2, 1, 0) ionic liquids at different temperatures. J Chem 2017:1–5. https://doi.org/10.1155/2017/7428097

    Article  CAS  Google Scholar 

  35. Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Eutectic-based ionic liquids with metal-containing anions and cations. Chem-Eur J 13(22):6495–6501. https://doi.org/10.1002/chem.200601738

    Article  CAS  PubMed  Google Scholar 

  36. Mountassir Z, Srhiri A (2007) Electrochemical behaviour of Cu–40Zn in 3% NaCl solution polluted by sulphides: effect of aminotriazole. Corros Sci 49(3):1350–1361. https://doi.org/10.1016/j.corsci.2006.07.001

    Article  CAS  Google Scholar 

  37. Chang LM, Chen D, Liu JH, Zhang RJ (2009) Effects of different plating modes on microstructure and corrosion resistance of Zn–Ni alloy coatings. J Alloys Compd 479(1–2):489–493. https://doi.org/10.1016/j.jallcom.2008.12.108

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52074084).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were done by Pingping Guan, Haobo Li, Zhongning Shi, Xin Zhang, and Aimin Liu. The first draft of the manuscript was written by Pingping Guan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhongning Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, P., Li, H., Zhang, X. et al. Electrodeposition of zinc from ethylene carbonate-ZnCl2 electrolyte system. Ionics 29, 2947–2958 (2023). https://doi.org/10.1007/s11581-023-05045-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05045-4

Keywords

Navigation