Skip to main content
Log in

Ce-doped molybdenum selenide: a promising electrochemical sensor for sensitive determination of p-nitrophenol

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

It is crucial to establish sensitive and selective electrochemical sensors for the detection of pollutants in the environment. In this research, CeMoSe2 composite, prepared via one-step hydrothermal approach, was constructed as an electrochemical sensor for sensitive determination of 4-nitrophenol (4-NP). Notably, the modified electrode (CeMoSe2/GCE) got a great deal of progress to catalyze the oxidation of 4-NP on electrode on account of the abundant active sites and preeminent electron transfer channels of CeMoSe2. At the same time, a series of characterizations and electrochemical measurements were employed to investigate the electrochemical properties of CeMoSe2/GCE to detect 4-NP. As a result, CeMoSe2/GCE exhibited linear responses towards 4-NP in the concentration ranges of 0.10~120 μM and the detection limit was calculated as 0.056 μM (S/N = 3). Besides, under optimized experimental conditions, the electrochemical sensor possessed outstanding catalytic performance for the detection of 4-NP. In a word, the results showed that CeMoSe2/GCE was a promising electrode with superb long-term stability and reproducibility for the determination of 4-NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khan SB, Akhtar K, Bakhsh EM, Asiri AM (2019) Electrochemical detection and catalytic removal of 4-nitrophenol using CeO2-Cu2O and CeO2-Cu2O/CH nanocomposites. Appl Surf Sci 492:726–735. https://doi.org/10.1016/j.apsusc.2019.06.205

    Article  CAS  Google Scholar 

  2. Ahmad N, Alam M, Wahab R, Ahmad J, Ubaidullah M, Ansari AA, Alotaibi NM (2019) Synthesis of NiO-CeO2 nanocomposite for electrochemical sensing of perilous 4-nitrophenol. J Mater Sci-Mater El 30:17643–17653. https://doi.org/10.1007/s10854-019-02113-2

    Article  CAS  Google Scholar 

  3. Vilian ATE, Choe SR, Giribabu K, Jang SC, Roh C, Huh YS, Han YK (2017) Pd nanospheres decorated reduced graphene oxide with multi-functions: highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant. J Hazard Mater 333:54–62. https://doi.org/10.1016/j.jhazmat.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  4. Hwa KY, Sharma TSK, Ganguly A (2020) Design strategy of rGO-HNT-AgNPs based hybrid nanocomposite with enhanced performance for electrochemical detection of 4-nitrophenol. Inorg Chem Front 7:1981–1994. https://doi.org/10.1039/d0qi00006j

    Article  CAS  Google Scholar 

  5. Ghazizadeh AJ, Afkhami A, Bagheri H (2018) Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Microchim Acta 185:296. https://doi.org/10.1007/s00604-018-2840-4

    Article  CAS  Google Scholar 

  6. Saadati F, Ghahramani F, Shayani-jam H, Piri F, Yaftian MR (2018) Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p-nitrophenol. J Taiwan Inst Chem E 86:213–221. https://doi.org/10.1016/j.jtice.2018.02.019

    Article  CAS  Google Scholar 

  7. Xu D, Li RY, Wang QS, Yang YQ, Wang GL, Li ZJ (2022) Thermal-switchable sensor based on palladium-graphene composite and poly (N-isopropylacrylamide) for electrochemical detection of 4-nitrophenol. Microchem J 172:106970. https://doi.org/10.1016/j.microc.2021.106970

    Article  CAS  Google Scholar 

  8. Chen TW, Rajaji U, Chen SM, Ramalingam RJ, Liu XH (2019) Developing green sonochemical approaches towards the synthesis of highly integrated and interconnected carbon nanofiber decorated with Sm2O3 nanoparticles and their use in the electrochemical detection of toxic 4-nitrophenol. Ultrason Sonochem 58:104595. https://doi.org/10.1016/j.ultsonch.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  9. He QG, Tian YL, Wu YY, Liu J, Li GL, Deng PH, Chen DC (2019) Facile and ultrasensitive determination of 4-nitrophenol based on acetylene black paste and graphene hybrid electrode. Nanomaterials-basel 9:429. https://doi.org/10.3390/nano9030429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balram D, Lian KY, Sebastian N (2020) Ultrasound-assisted synthesis of 3D flower-like zinc oxide decorated fMWCNTs for sensitive detection of toxic environmental pollutant 4-nitrophenol. Ultrason Sonochem 60:104798. https://doi.org/10.1016/j.ultsonch.2019.104798

    Article  CAS  PubMed  Google Scholar 

  11. Chinnapaiyan S, Chen TW, Chen SM, Alothman ZA, Ali MA, Wabaidur SM, Al-Hemaid F, Lee SY, Chang WH (2020) Ultrasonic-assisted preparation and characterization of magnetic ZnFe2O4/g-C3N4 nanomaterial and their applications towards electrocatalytic reduction of 4-nitrophenol. Ultrason Sonochem 68:105071. https://doi.org/10.1016/j.ultsonch.2020.105071

    Article  CAS  PubMed  Google Scholar 

  12. Vinoth S, Sampathkumar P, Giribabu K, Pandikumar A (2020) Ultrasonically assisted synthesis of barium stannate incorporated graphitic carbon nitride nanocomposite and its analytical performance in electrochemical sensing of 4-nitrophenol. Ultrason Sonochem 62:104855. https://doi.org/10.1016/j.ultsonch.2019.104855

    Article  CAS  PubMed  Google Scholar 

  13. Xu HQ, Wang HL, Lu YX, Zeng YB, Yang YW, Zhang ZL, Wang HM, Wang X, Li L (2021) CeO2 quantum dots for highly selective and ultrasensitive fluorescence detection of 4-nitrophenol via the fluorescence resonance energy transfer mechanism. Spectrochim Acta A 262:120115. https://doi.org/10.1016/j.saa.2021.120115

    Article  CAS  Google Scholar 

  14. Tammina SK, Yang YL (2020) Highly sensitive and selective detection of 4-nitrophenol, and on-off-on fluorescence sensor for Cr (VI) and ascorbic acid detection by glucosamine derived n-doped carbon dots. J Photoch Photobio A 387:112134. https://doi.org/10.1016/j.jphotochem.2019.112134

    Article  CAS  Google Scholar 

  15. Wang HL, Yan H, Wang CJ, Chen F, Ma MP, Wang WW, Wang XD (2012) Analysis of phenolic pollutants in human samples by high performance capillary electrophoresis based on pretreatment of ultrasound-assisted emulsification microextraction and solidification of floating organic droplet. J Chromatogr A 1253:16–21. https://doi.org/10.1016/j.chroma.2012.06.088

    Article  CAS  PubMed  Google Scholar 

  16. Xie XW, Ma XG, Guo LH, Fan YM, Zeng GL, Zhang MY, Li J (2019) Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem Eng J 357:56–65. https://doi.org/10.1016/j.cej.2018.09.080

    Article  CAS  Google Scholar 

  17. Fujii S, Ohta T, Ehama R, Irikida M, Nomura S, Shoyama Y, Uto T (2023) Development of an indirect competitive enzyme-linked immunosorbent assay for formononetin and its application in a cell-based assay using MC3T3-E1 cells. Food Chem 403:134339. https://doi.org/10.1016/j.foodchem.2022.134339

    Article  CAS  PubMed  Google Scholar 

  18. Nie X, Deng PH, Wang HY, Tang YG (2022) An electrochemical sensor based on a nitrogen-doped carbon material and PEI composites for sensitive detection of 4-nitrophenol. Nanomaterials-basel 12:86. https://doi.org/10.3390/nano12010086

    Article  CAS  Google Scholar 

  19. Pang XL, Bai HY, Zhao Y, Qu LL, Xu DB, Ding JR, Fan WQ, Shi WD (2021) Photoelectrochemical detection of 4-nitrophenol by sensitive Ni/Cu2O photocathode. Electrochim Acta 367:137453. https://doi.org/10.1016/j.electacta.2020.137453

    Article  CAS  Google Scholar 

  20. Wu MJ, Wang LW, Xu FG, Ma GR (2022) Preparation of Ni-MOF superstructure-reduced graphene oxide composite for enhanced electrochemical sensing of acetaminophen. Ionics 28:5571–5580. https://doi.org/10.1007/s11581-022-04778-y

    Article  CAS  Google Scholar 

  21. Baye AF, Han DH, Kassahun SK, Appiah-Ntiamoah R, Kim H (2021) Improving the reduction and sensing capability of Fe3O4 towards 4-nitrophenol by coupling with ZnO/Fe-0/Fe3C/graphitic carbon using ZnFe-LDH@carbon as a template. Electrochim Acta 398:139343. https://doi.org/10.1016/j.electacta.2021.139343

    Article  CAS  Google Scholar 

  22. Mehmandoust M, Erk N, Karaman C, Karaman O (2022) An electrochemical molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay. Chemosphere 291:132807. https://doi.org/10.1016/j.chemosphere.2021.132807

    Article  CAS  PubMed  Google Scholar 

  23. Narouie S, Rounaghi GH, Saravani H, Shahbakhsh M (2022) Poly (biphenol/biphenoquinone - vanadium (IV)) modified electrode as selective sensor for detection of 4-nitrophenol. Microchem J 172:106945. https://doi.org/10.1016/j.microc.2021.106945

    Article  CAS  Google Scholar 

  24. Wei XF, Guo JL, Lian HT, Sun XY, Liu B (2021) Cobalt metal-organic framework modified carbon cloth/paper hybrid electrochemical button-sensor for nonenzymatic glucose diagnostics. Sensor Actuat B-Chem 329:129205. https://doi.org/10.1016/j.snb.2020.129205

    Article  CAS  Google Scholar 

  25. Nejad FG, Tajik S, Beitollahi H, Sheikhshoaie I (2021) Magnetic nanomaterials based electrochemical (bio) sensors for food analysis. Talanta 228:122075. https://doi.org/10.1016/j.talanta.2020.122075

    Article  CAS  Google Scholar 

  26. Wu JH, Yang QT, Li Q, Li HY, Li F (2021) Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Anal Chem 93:4084–4091. https://doi.org/10.1016/j.talanta.2020.122075

    Article  CAS  PubMed  Google Scholar 

  27. Luxa J, Vosecky P, Mazanek V, Sedmidubsky D, Pumera M, Sofer Z (2018) Cation-controlled electrocatalytical activity of transition-metal disulfides. ACS Catal 8:2774–2781. https://doi.org/10.1021/acscatal.7b04233

    Article  CAS  Google Scholar 

  28. Liu S, Li MS, Wang CL, Jiang P, Hu L, Chen QW (2018) Tuning the electronic structure of Se via constructing Rh-MoSe2 nanocomposite to generate high-performance electrocatalysis for hydrogen evolution reaction. ACS Sustain Chem Eng 6:9137–9144. https://doi.org/10.1021/acssuschemeng.8b01467

    Article  CAS  Google Scholar 

  29. Wang XH, Wang XH, Huang JF, Li SX, Meng A, Li ZJ (2021) Interfacial chemical bond and internal electric field modulated Z-scheme S-v-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat Commun 12:4112. https://doi.org/10.1038/s41467-021-24511-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang LJ, Krasnok A, Alu A, Yu YL, Neshev D, Miroshnichenko AE (2022) Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. Rep Prog Phys 85:046401. https://doi.org/10.1088/1361-6633/ac45f9

    Article  Google Scholar 

  31. Ma XY, Li JQ, An CH, Feng J, Chi YH, Liu JX, Zhang J, Sun YG (2016) Ultrathin Co (Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res 9:2284–2293. https://doi.org/10.1007/s12274-016-1115-9

    Article  CAS  Google Scholar 

  32. Li PH, Yang Y, Gong S, Lv F, Wang W, Li YJ, Luo MC, Xing Y, Wang Q, Guo SJ (2019) Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Res 12:2218–2223. https://doi.org/10.1007/s12274-018-2250-2

    Article  CAS  Google Scholar 

  33. Choffel MA, Gannon RN, Goehler F, Miller AM, Medlin DL, Seyller T, Johnson DC (2021) Synthesis and electrical properties of a new compound (BiSe)(0.97)(Bi2Se3)(1.26)(BiSe)(0.97)(MoSe2) containing metallic 1T-MoSe2. Chem Mater 33:6403–6411. https://doi.org/10.1021/acs.chemmater.1c01623

    Article  CAS  Google Scholar 

  34. Li N, Zhou QH, Lin J, Lu YZ, Hou ZG, Qian YT (2022) One-pot synthesis of uniform MoSe2 nanoparticles as high performance anode materials for lithium/sodium ion batteries. J Alloy Compd 922:166306. https://doi.org/10.1016/j.jallcom.2021.166306

    Article  CAS  Google Scholar 

  35. Gui YG, Luo PA, Ji C, Lin YH, Chen XP (2022) First-principles study of the gas sensing of benzene and formaldehyde by Ag2O and CuO modified MoSe2 nanosheets. ACS Appl Nano Mater 5:12907–12914. https://doi.org/10.1021/acsanm.2c02753

    Article  CAS  Google Scholar 

  36. Yin FX, Yang P, Yuan WJ, Semencha A, Zhang CW, Ji PG, Wang GK (2021) Flexible MoSe2/MXene films for Li/Na-ion hybrid capacitors. J Power Sources 488:229452. https://doi.org/10.1016/j.jpowsour.2021.229452

    Article  CAS  Google Scholar 

  37. Zhang XD, Zeng YM, Shi WY, Tao Z, Liao JJ, Ai CZ, Si HW, Wang ZP, Fisher AC, Lin SW (2022) S-scheme heterojunction of core-shell biphase (1T-2H)-MoSe2/TiO2 nanorod arrays for enhanced photoelectrocatalytic production of hydrogen peroxide. Chem Eng J 429:131312. https://doi.org/10.1016/j.cej.2021.131312

    Article  CAS  Google Scholar 

  38. Ramki S, Sukanya R, Chen SM, Sakthivel M, Wang JY (2019) Simple hydrothermal synthesis of defective CeMoSe2 dendrites as an effective electrocatalyst for the electrochemical sensing of 4-nitrophenol in water samples. New J Chem 43:17200–17210. https://doi.org/10.1039/c9nj03891d

    Article  CAS  Google Scholar 

  39. Xu L, Yalikun N, Yang XQ, Wang X (2022) Construction of alizarin red electrochemical sensor based on sulfur-cobalt two-phase doped coal pitch-derived porous carbon material. Ionics 29. https://doi.org/10.1007/s11581-022-04836-5

  40. Yang XZ, Li WH, Ai TT, Bao WW, Dong HF, Jiang P, Zou XY (2022) An efficient hydrogen evolution by self-supported nickel sulfur-based hybrid nanoplate electrocatalyst. Ionics 28:353–360. https://doi.org/10.1007/s11581-021-04301-9

    Article  CAS  Google Scholar 

  41. Li J, Lei XK, Qin FR, Zong CX, Liu LL, Zhang K (2019) MoSe2 nanosheets embedded in mesoporous carbon as anode materials for sodium ion batteries. Ionics 25:3143–3152. https://doi.org/10.1007/s11581-019-02889-7

    Article  CAS  Google Scholar 

  42. Yang WW, Lu HM, Cao Y, Jing PC, Hu XQ, Yu H (2020) A flexible free-standing cathode based on graphene-like MoSe2 nanosheets anchored on N-doped carbon nanofibers for rechargeable aluminum-ion batteries. Ionics 26:3405–3413. https://doi.org/10.1007/s11581-020-03476-x

    Article  CAS  Google Scholar 

  43. Guo XD, Yin DG (2022) Fabrication of a novel hybrid MIL-53(Fe)/MoSe2 with outstanding photocatalytic performances. Ionics 28:3907–3917. https://doi.org/10.1007/s11581-022-04615-2

    Article  CAS  Google Scholar 

  44. Zhang CP, Zhang JH, Fu YJ, Liu JW, Wang SQ, Wang YX (2023) Facile synthesis of MoSe2/carbon nanotubes (CNTs) composite with improved electrochemical performance for lithium/sodium storage. Ionics. https://doi.org/10.1007/s11581-022-04865-0

  45. Ambaye AD, Kefeni KK, Kebede TG, Ntsendwana B, Mishra SB, Nxumalo EN (2022) Cu-MOF/N-doped GO nanocomposites modified screen-printed carbon electrode towards detection of 4-nitrophenol. J Electroanal Chem 919:116542. https://doi.org/10.1016/j.jelechem.2022.116542

    Article  CAS  Google Scholar 

  46. Tang J, Huang C, Wu QD, Cui AL, Li WJ (2022) Atomic-scale intercalation of N-doped carbon into monolayered MoSe2-Mo2C heterojunction as a highly efficiency hydrogen evolution reaction catalyst. J Electroanal Chem 906:115897. https://doi.org/10.1016/j.jelechem.2021.115897

    Article  CAS  Google Scholar 

  47. Han WJ, Yuan L, Liu XC, Wang CY, Li J (2021) Ultrathin MoSe2 nanosheets decorated on carbon aerogel microspheres for high-capacity supercapacitor electrodes. J Electroanal Chem 899:115643. https://doi.org/10.1016/j.jelechem.2021.115643

    Article  CAS  Google Scholar 

  48. Lin L, Chen DX, Lu CF, Wang XX (2022) Fluorescence and colorimetric dual-signal determination of Fe3+ and glutathione with MoSe2@Fe nanozyme. Microchem J 177:107283. https://doi.org/10.1016/j.microc.2022.107283

    Article  CAS  Google Scholar 

  49. Vattikuti SVP, Devarayapalli KC, Nagajyothi PC, Shim J (2020) Microwave synthesized dry leaf-like mesoporous MoSe2 nanostructure as an efficient catalyst for enhanced hydrogen evolution and supercapacitor applications1. Microchem J 153:104446. https://doi.org/10.1016/j.microc.2019.104446

    Article  CAS  Google Scholar 

  50. Zang YJ, Nie J, He B, Yin W, Zheng J, Hou CJ, Huo DQ, Yang M, Liu FM, Sun QQ, Qin YL, Fa HB (2020) Fabrication of S-MoSe2/NSG/Au/MIPs imprinted composites for electrochemical detection of dopamine based on synergistic effect. Microchem J 156:104845. https://doi.org/10.1016/j.microc.2020.104845

    Article  CAS  Google Scholar 

  51. Cao F, Huang YK, Wang F, Kwak D, Dong QC, Song DH, Zeng J, Lei Y (2018) A high-performance electrochemical sensor for biologically meaningful L-cysteine based on a new nanostructured L-cysteine electrocatalyst. Anal Chim Acta 1019:103–110. https://doi.org/10.1016/j.aca.2018.02.048

    Article  CAS  PubMed  Google Scholar 

  52. Manibalan G, Murugadoss G, Thangamuthu R, Kumar RM, Jayavel R (2019) Facile synthesis of heterostructure CeO2-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications. J Alloy Compd 773:449–461. https://doi.org/10.1016/j.jallcom.2018.09.210

    Article  CAS  Google Scholar 

  53. Vikraman D, Hussain S, Karuppasamy K, Feroze A, Kathalingam A, Sanmugam A, Chun SH, Jung J, Kim HS (2020) Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl Catal B-Environ 264:118531. https://doi.org/10.1016/j.apcatb.2019.118531

    Article  CAS  Google Scholar 

  54. Atif R, Zarkov A, Asuigui DRC, Glaser P, Stewart O, Stoll SL (2019) Single-source precursors for lanthanide diselenide nanosheets. Chem Mater 31:7779–7789. https://doi.org/10.1021/acs.chemmater.9b03067

    Article  CAS  Google Scholar 

  55. Sakthivel M, Sukanya R, Chen SM, Dinesh B (2018) Synthesis of two-dimensional Sr-doped MoSe2 nanosheets and their application for efficient electrochemical reduction of metronidazole. J Phys Chem C 122:12474–12484. https://doi.org/10.1021/acs.jpcc.8b02188

    Article  CAS  Google Scholar 

  56. Nasr-Esfahani P, Ensafi AA, Rezaei B (2019) Fabrication of a highly sensitive and selective modified electrode for imidacloprid determination based on designed nanocomposite graphene quantum dots/ionic liquid/multiwall carbon nanotubes/polyaniline. Sensor Actuat B-Chem 296:126682. https://doi.org/10.1016/j.snb.2019.126682

    Article  CAS  Google Scholar 

  57. Zhang GL, He P, Feng WR, Ding SS, Chen JC, Li L, He HC, Zhang SS, Dong FQ (2016) Carbon nanohorns/poly (glycine) modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of uric acid, dopamine and ascorbic acid. J Electroanal Chem 760:24–31. https://doi.org/10.1016/j.jelechem.2015.11.035

    Article  CAS  Google Scholar 

  58. Song DM, Xia JF, Zhang FF, Bi S, Xiang WJ, Wang ZH, Xia L, Xia YZ, Li YH, Xia LH (2015) Multiwall carbon nanotubes-poly (diallyldimethylammonium chloride)-graphene hybrid composite film for simultaneous determination of catechol and hydroquinone. Sensor Actuat B-Chem 206:111–118. https://doi.org/10.1016/j.snb.2014.08.084

    Article  CAS  Google Scholar 

  59. Karthik R, Hou YS, Chen SM, Elangovan A, Ganesan M, Muthukrishnan P (2016) Eco-friendly synthesis of Ag-NPs using cerasus serrulata plant extract-its catalytic, electrochemical reduction of 4-NPh and antibacterial activity. J Ind Eng Chem 37:330–339. https://doi.org/10.1016/j.jiec.2016.03.044

    Article  CAS  Google Scholar 

  60. Wiench P, Grzyb B, Gonzalez Z, Menendez R, Handke B, Gryglewicz G (2017) pH robust electrochemical detection of 4-nitrophenol on a reduced graphene oxide modified glassy carbon electrode. J Electroanal Chem 787:80–87. https://doi.org/10.1016/j.jelechem.2017.01.040

    Article  CAS  Google Scholar 

  61. Shahid MM, Rameshkumar P, Huang NM (2015) Morphology dependent electrocatalytic properties of hydrothermally synthesized cobalt oxide nanostructures. Ceram Int 41:13210–13217. https://doi.org/10.1016/j.ceramint.2015.07.098

    Article  CAS  Google Scholar 

  62. de Lima CA, da Silva PS, Spinelli A (2014) Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds. Sensor Actuat B-Chem 196:39–45. https://doi.org/10.1016/j.snb.2014.02.005

    Article  CAS  Google Scholar 

  63. Rounagui G, Kakhki RM, Azizi-Toupkanloo H (2012) Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. Mat Sci Eng C-Mater 32:172–177. https://doi.org/10.1016/j.msec.2011.10.014

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Sichuan Provincial College Students Innovation and Entrepreneurship Training Program (Grant No. S202010619008) and the International Science and Technology Cooperation Laboratory of Micro-nanoparticle Application Research of Southwest University of Science and Technology (Grant No. 19MNA001). National Natural Science Foundation of China (41872039 and 41831285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping He, Dingming Yang or Bin Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Tang, W., Yang, L. et al. Ce-doped molybdenum selenide: a promising electrochemical sensor for sensitive determination of p-nitrophenol. Ionics 29, 2053–2063 (2023). https://doi.org/10.1007/s11581-023-04937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04937-9

Keywords

Navigation