Skip to main content
Log in

A porous SiOx/C anode material derived from biomass white onion for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to find a low-cost, simple, and controllable method to construct a material structure that can cope with the volume expansion of silicon suboxide, here, we report white onion as a biomass material and obtained biomass derivatives layered porous SiOx/C anode material through activation treatment, pre-calcination, and aluminothermic reduction. It is found that the layered porous structure of SiOx/C can be effectively controlled by varied activation treatment temperatures. The SiOx/C-6 anode material lastly obtained by the activation temperature of 600 °C shows the best electrochemical performance, and SiOx/C The initial discharge specific capacity of SiOx/C-6 at a current density of 0.1 A·g−1 is 1753.4 mAh·g−1, and it still has a reversible specific capacity of 926.5 mAh·g−1 after 100 cycles, compared with that after the second cycle the capacity retention rate is as high as 94.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Xie Y, Qiu M, Gao X, Guan D, Yuan C (2015) Phase field modeling of silicon nanowire based lithium ion battery composite electrode. Electrochim Acta 186:542–551. https://doi.org/10.1016/j.electacta.2015.11.022

    Article  CAS  Google Scholar 

  2. Reyes Jimenez A, Klopsch R, Wagner R, Rodehorst UC, Kolek M, Nolle R, Winter M, Placke T (2017) A step toward high-energy silicon-based thin film lithium ion batteries. ACS Nano 11(5):4731–4744. https://doi.org/10.1021/acsnano.7b00922

    Article  CAS  PubMed  Google Scholar 

  3. Harpak N, Davidi G, Schneier D, Menkin S, Mados E, Golodnitsky D, Peled E, Patolsky F (2019) Large-scale self-catalyzed spongelike silicon nano-network-based 3D anodes for high-capacity lithium-ion batteries. Nano Lett 19(3):1944–1954. https://doi.org/10.1021/acs.nanolett.8b05127

    Article  CAS  PubMed  Google Scholar 

  4. Li G, Li J-Y, Yue F-S, Xu Q, Zuo T-T, Yin Y-X, Guo Y-G (2019) Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy 60:485–492. https://doi.org/10.1016/j.nanoen.2019.03.077

    Article  CAS  Google Scholar 

  5. Mu G, Mu D, Wu B, Ma C, Bi J, Zhang L, Yang H, Wu F (2020) Microsphere-like SiO2/MXene hybrid material enabling high performance anode for lithium ion batteries. Small 16(3):1905430. https://doi.org/10.1002/smll.201905430

    Article  CAS  Google Scholar 

  6. Ouyang P, Jin C, Xu G, Yang X, Liu B, Dan J, Chen J, Yue Z, Li X, Sun F, Sun X, Zhou L (2021) Novel SiOx/Cu3Si/Cu anode materials for lithium-ion batteries. Ceram Int 47(7):8868–8878. https://doi.org/10.1016/j.ceramint.2020.12.008

    Article  CAS  Google Scholar 

  7. Cheng Y, Wei K, Yu Z, Fan D, Yan DL, Pan Z, Tian B (2021) Ternary Si-SiO-Al composite films as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 13(29):34447–34456. https://doi.org/10.1021/acsami.1c09327

    Article  CAS  PubMed  Google Scholar 

  8. Lee L, To A Ran W, Lee JH, Hwang SM, Kim YJ (2022) Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries. Chemical Engineering Journal 442:136166. https://doi.org/10.1016/j.cej.2022.136166

    Article  CAS  Google Scholar 

  9. Xiao Z, Yu C, Lin X, Chen X, Zhang C, Wei F (2019) Uniform coating of nano-carbon layer on SiOx in aggregated fluidized bed as high-performance anode material. Carbon 149:462–470. https://doi.org/10.1016/j.carbon.2019.04.051

    Article  CAS  Google Scholar 

  10. Han J, Chen G, Yan T, Liu H, Shi L, An Z, Zhang J, Zhang D (2018) Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery. Chem Eng J 347:273–279. https://doi.org/10.1016/j.cej.2018.04.100

    Article  CAS  Google Scholar 

  11. Liao C, Wu S (2019) Pseudocapacitance behavior on Fe3O4-pillared SiOx microsphere wrapped by graphene as high performance anodes for lithium-ion batteries. Chem Eng J 355:805–814. https://doi.org/10.1016/j.cej.2018.08.141

    Article  CAS  Google Scholar 

  12. Jiang M, Zhang F, Zhu G, Ma Y, Luo W, Zhou T, Yang J (2020) Interface-amorphized Ti3C2@Si/SiOx@TiO2 anodes with sandwiched structures and stable lithium storage. ACS Appl Mater Interfaces 12(22):24796–24805. https://doi.org/10.1021/acsami.0c05116

    Article  CAS  PubMed  Google Scholar 

  13. Dou F, Weng Y, Chen G, Shi L, Liu H, Zhang D (2020) Volume expansion restriction effects of thick TiO2/C hybrid coatings on micro-sized SiOx anode materials. Chem Eng J 387:124106. https://doi.org/10.1016/j.cej.2020.124106

    Article  CAS  Google Scholar 

  14. Zhao R, Wang S, Liu D, Liu Y, Lv X, Zeng X, Li B (2021) Effect of fluoroethylene carbonate on solid electrolyte interphase formation of the SiO/C anode observed by in situ atomic force microscopy. ACS Appl Energy Mater 4(1):492–499. https://doi.org/10.1021/acsaem.0c02399

    Article  CAS  Google Scholar 

  15. Yang H-W, Kang WS, Kim S-J (2022) A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiO anode for Li-ion batteries. Electrochim Acta 412:140107. https://doi.org/10.1016/j.electacta.2022.140107

    Article  CAS  Google Scholar 

  16. Baek S-H, Jeong Y-M, Chul Shin S, Joon Choi B, Hwan Han J (2021) Tunable solid electrolyte interphase formation on SiO anodes using SnO artificial layers for Lithium-ion batteries. Appl Surf Sci 549:149028. https://doi.org/10.1016/j.apsusc.2021.149028

    Article  CAS  Google Scholar 

  17. Yang Z, Jiang M, Wang X, Wang Y, Cao M (2021) Constructing a stable Si-N-enriched interface boosts lithium storage kinetics in a silicon-based anode. ACS Appl Mater Interfaces 13:52636–52646. https://doi.org/10.1021/acsami.1c15483

    Article  CAS  Google Scholar 

  18. Li G, Huang LB, Yan MY, Li JY, Jiang KC, Yin YX, Xin S, Xu Q, Guo YG (2020) An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy 74:104890. https://doi.org/10.1016/j.nanoen.2020.104890

    Article  CAS  Google Scholar 

  19. Gao YP, Zhai ZB, Huang KJ, Zhang YY (2017) Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New J Chem 41(20):11456–11470. https://doi.org/10.1039/c7nj02580g

    Article  CAS  Google Scholar 

  20. Zaky RR, Hessien MM, El-Midany AA, Khedr MH, Abdel-Aal EA, El-Barawy KA (2008) Preparation of silica nanoparticles from semi-burned rice straw ash. Powder Technol 185(1):31–35. https://doi.org/10.1016/j.powtec.2007.09.012

    Article  CAS  Google Scholar 

  21. Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng Xs, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127. https://doi.org/10.1016/j.nanoen.2016.04.043

    Article  CAS  Google Scholar 

  22. Li X, Yan P, Arey BW, Luo W, Ji X, Wang C, Liu J, Zhang J-G (2016) A stable nanoporous silicon anode prepared by modified magnesiothermic reactions. Nano Energy 20:68–75. https://doi.org/10.1016/j.nanoen.2015.12.011

    Article  CAS  Google Scholar 

  23. Wei H, Xu D, Chen W, Liu X, Zhang Z, Dai L, Hu H, Yu X (2022) Low-temperature hydrothermal activation-catalytic carbonation boosting porous Si/SiOx@C composites derived from bamboo leaves for superior lithium storage performance. Appl Surf Sci 584:152580. https://doi.org/10.1016/j.apsusc.2022.152580

    Article  CAS  Google Scholar 

  24. Liu J, Kopold P, van Aken PA, Maier J, Yu Y (2015) Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium-ion batteries. Angew Chem Int Ed Engl 54(33):9632–9636. https://doi.org/10.1002/anie.201503150

    Article  CAS  PubMed  Google Scholar 

  25. Chen W, Xu D, Kuang S, Wu Z, Hu H, Zheng M, Yu X (2021) Hierarchically porous SiOx/C and carbon materials from one biomass waste precursor toward high-performance lithium/sodium storage. J Power Sources 489:229459. https://doi.org/10.1016/j.jpowsour.2021.229459

    Article  CAS  Google Scholar 

  26. Yang S, Wang S, Liu X, Li L (2019) Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147:540–549. https://doi.org/10.1016/j.carbon.2019.03.023

    Article  CAS  Google Scholar 

  27. Zhang Y, Liu X, Wang S, Dou S, Li L (2016) Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J Mate Chem A 4(28):10869–10877. https://doi.org/10.1039/c6ta03826c

    Article  CAS  Google Scholar 

  28. Su A, Li J, Dong J, Yang D, Chen G, Wei Y (2020) An amorphous/crystalline incorporated Si/SiOx anode material derived from biomass corn leaves for lithium-ion batteries. Small 16(24):2001714. https://doi.org/10.1002/smll.202001714

    Article  CAS  Google Scholar 

  29. Zhou X, Liu Y, Ren Y, Mu T, Yin X, Du C, Huo H, Cheng X, Zuo P, Yin G (2021) Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries. Adv Funct Mater 31(21):2101145. https://doi.org/10.1002/adfm.202101145

  30. Bai X, Yu Y, Kung HH, Wang B, Jiang J (2016) Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J Power Sources 306:42–48. https://doi.org/10.1016/j.jpowsour.2015.11.102

    Article  CAS  Google Scholar 

  31. Zhang L, Gu X, Yan C, Zhang S, Li L, Jin Y, Zhao S, Wang H, Zhao X (2018) Titanosilicate derived SiO2/TiO2@C nanosheets with highly distributed TiO2 nanoparticles in SiO2 matrix as robust lithium ion battery anode. ACS Appl Mater Interfaces 10(51):44463–44471. https://doi.org/10.1021/acsami.8b16238

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Zeng Y, Ren Y, Zeng C, Gu J, Feng X, He H (2015) Fabrication and lithium storage performance of sugar apple-shaped SiOx@C nanocomposite spheres. J Power Sources 288:53–61. https://doi.org/10.1016/j.jpowsour.2015.04.127

    Article  CAS  Google Scholar 

  33. Chen T, Wu J, Zhang Q, Su X (2017) Recent advancement of SiOx based anodes for lithium-ion batteries. J Power Sources 363:126–144. https://doi.org/10.1016/j.jpowsour.2017.07.073

    Article  CAS  Google Scholar 

  34. Ren Y, Li M (2016) Facile synthesis of SiOx@C composite nanorods as anodes for lithium ion batteries with excellent electrochemical performance. J Power Sources 306:459–466. https://doi.org/10.1016/j.jpowsour.2015.12.064

    Article  CAS  Google Scholar 

  35. Yi Z, Qian Y, Cao C, Lin N, Qian Y (2019) Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage. Carbon 149:664–671. https://doi.org/10.1016/j.carbon.2019.04.080

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Specialized Research Fund for the Technology Innovation of Foshan City (1920001001421), the Science and Technology Plan Foundation of Guangdong (2017B010119002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., He, J., Wu, J. et al. A porous SiOx/C anode material derived from biomass white onion for lithium-ion batteries. Ionics 28, 5475–5487 (2022). https://doi.org/10.1007/s11581-022-04790-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04790-2

Keywords

Navigation