Skip to main content

Advertisement

Log in

Bi@C fibre synthesized by electrostatic spinning as high-performance anode material for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bismuth-based material as a stable anode material for lithium-ion battery, which has the advantages of stable operating voltage and large volume energy density. In order to make the most of the theoretical specific capacity of 386 mAh g −1 bismuth-based materials, the carbon coating method will be used to obtain stable specific capacity. However, electrostatic spinning is great method of carbon coated precursor preparation. Here, the BiCl3 reagent is added into the PAN-DMF spinning liquid to synthesize the fibrous Bi@C composites precursor, and the Bi@C fibre is obtained after heat treatment. Then the Bi@C fibres with different BiCl3 content are used as anode materials for lithium-ion batteries to test the electrochemical performance of Bi@C. The results show that Bi@C fibre electrode can maintain the discharge capacity of 415.3 mAh g−1 at the current density of 100 mA g−1 for 100 cycles when the content of BiCl3 is 1.5 g. When the current density is 500 mA g−1, the specific capacity can still reach 415.7 mAh g−1 after 250 cycles and shows excellent electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zheng RT, Yu HX, Zhang XK, Ding Y, Xia MT, Cao KZ, Shu J, Vlad A, Su BL (2021) A TiSe2-graphite dual ion battery: fast Na-ion insertion and excellent stability. Angew Chem Int Ed 60:18430–18437. https://doi.org/10.1002/anie.202105439

    Article  CAS  Google Scholar 

  2. Huang CC, Liu YW, Zheng RT, Yang ZW, Miao ZH, Zhang JW, Cai XH, Yu HX, Zhang LY, Shu J (2022) Interlayer gap widened TiS2 for highly efficient sodium-ion storage. J Mater Sci Technol 107:64–69. https://doi.org/10.1016/j.jmst.2021.08.035

    Article  Google Scholar 

  3. Yang C, Zhang XY, Li JZ, Ma JC et al (2020) Holey graphite: a promising anode material with ultrahigh storage for lithium-ion battery. Electrochim Acta 346:136244. https://doi.org/10.1016/j.electacta.2020.136244

    Article  CAS  Google Scholar 

  4. Park C, Yoon S, Lee S, Sohn H (2009) Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J Power Sources 186:206–210. https://doi.org/10.1016/j.jpowsour.2008.09.097

    Article  CAS  Google Scholar 

  5. Yang FH, Yu F, Zhang ZA, Zhang K, Lai YQ, Li J (2016) Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem Eur J 22:2333–2338. https://doi.org/10.1002/chem.201503272

    Article  PubMed  CAS  Google Scholar 

  6. Liu Z, Jin SM, Cui KX, Zhao J, Xie SY, Li JZ, Chang XH (2020) Cavity containing core-shell Bi@C nanowires toward high performance lithium ion batteries. J Alloys Compd 842:155796. https://doi.org/10.1016/j.jallcom.2020.155796

    Article  CAS  Google Scholar 

  7. Bai J, Chen X, Olsson E, Wu H, Wang SQ, Cai Q, Feng CQ (2020) Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries. J Mater Sci Technol 50:92–102. https://doi.org/10.1016/j.jmst.2020.01.045

    Article  Google Scholar 

  8. Xiong T, Huang HW, Sun YJ, Dong F (2015) In situ synthesis of a C-doped (BiO)2CO3 hierarchical self-assembly effectively promoting visible light photocatalysis. J Mater Chem A 3:6118–6127. https://doi.org/10.1039/c5ta00103j

    Article  CAS  Google Scholar 

  9. Nitta N, Yushin G (2014) High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31:317–336. https://doi.org/10.1002/ppsc.201300231

    Article  CAS  Google Scholar 

  10. Ma JJ, Zhu SJ, Shan QY, Liu SF et al (2015) Facile synthesis of flower-like (BiO)2CO3@MnO2 and Bi2O3@MnO2 nanocomposites for supercapacitors. Electrochim Acta 168:97–103. https://doi.org/10.1016/j.electacta.2015.04.018

    Article  CAS  Google Scholar 

  11. Peng SJ, Li LL, Tan HT, Wu YZ et al (2013) Monodispersed Ag nanoparticles loaded on the PVP-assisted synthetic Bi2O2CO3 microspheres with enhanced photocatalytic and supercapacitive performances. J Mater Chem A 26:7630–7638. https://doi.org/10.1039/c3ta10951h

    Article  CAS  Google Scholar 

  12. Xiong PX, Bai PX, Li A, Li BF, Cheng MR, Chen YP, Huang SP, Jiang Q, Bu XH, Xu YH (2019) Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries. Adv Mater 28:1904771. https://doi.org/10.1002/adma.201904771

    Article  CAS  Google Scholar 

  13. Soltani S, Khanian N, Shojaei TR, Choong T, Asim N (2022) Fundamental and recent progress on the strengthening strategies for fabrication of polyacrylonitrile (PAN)-derived electrospun CNFs: precursors, spinning and collection, and post-treatments. J Ind Eng Chem 110:329–344. https://doi.org/10.1016/j.jiec.2022.03.005

    Article  CAS  Google Scholar 

  14. Zhang LS, Bai QL, Jin K, Wang LZ et al (2015) Synthesis and electrochemical performance of Bi2WO6/graphene composite as anode material for lithium-ion batteries. Mater Lett 141:88–91. https://doi.org/10.1016/j.matlet.2014.11.041

    Article  CAS  Google Scholar 

  15. Wang ZY, Duan CQ, Wang D, Dong KZ et al (2020) BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. J Colloid Interface Sci 580:429–438. https://doi.org/10.1016/j.jcis.2020.07.061

    Article  PubMed  CAS  Google Scholar 

  16. Cruz A, Alfaro S (2009) Synthesis and characterization of nanoparticles of a-Bi2Mo3O12 prepared by co-precipitation method: Langmuir adsorption parameters and photocatalytic properties with rhodamine B. Solid State Sci 11:829–835. https://doi.org/10.1016/j.solidstatesciences.2009.01.007

    Article  CAS  Google Scholar 

  17. Huang ZD, Lu H, Qian K, Fang YW et al (2018) Interfacial engineering enables Bi@C-TiOx microspheres as superpower and long life anode for lithium-ion batteries. Nano Energy 51:137–145. https://doi.org/10.1016/j.nanoen.2018.06.051

    Article  CAS  Google Scholar 

  18. Hong WW, Wang AN, Li L, Qiu TY et al (2021) Bi dots confined by functional carbon as high-performance anode for lithium ion batteries. Adv Funct Mater 31:2000756. https://doi.org/10.1002/adfm.202000756

    Article  CAS  Google Scholar 

  19. Dai R, Wang YH, Da PM, Wu H et al (2014) Indirect growth of mesoporous Bi@C core–shell nanowires for enhanced lithium-ion storage. Nanoscale 21:13236–13241. https://doi.org/10.1039/c4nr04378b

    Article  Google Scholar 

  20. Hong WW, Ge P, Jiang YL, Yang L et al (2019) Yolk−shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity. ACS Appl Mater Interfaces 11:10829–10840. https://doi.org/10.1021/acsami.8b20477

    Article  PubMed  CAS  Google Scholar 

  21. Yuan S, Zhao Y, Chen WB, Wu C et al (2017) Self-assembled 3D hierarchical porous Bi2MoO6 microspheres toward high capacity and ultra-long-life anode material for Li-ion batteries. ACS Appl Mater Interfaces 9:21781–21790. https://doi.org/10.1021/acsami.7b04045

    Article  PubMed  CAS  Google Scholar 

  22. Maiti S, Pramanik A, Dhawa T, Sreemany M, Mahanty S (2018) Bi-metal organic framework derived nickel manganese oxide spinel for lithium-ion battery anode. Mater Sci Eng B 229:27–33. https://doi.org/10.1016/j.mseb.2017.12.018

    Article  CAS  Google Scholar 

  23. Chai WW, Yin WH, Wang K, Ye WK, Tang B, Rui YC (2019) Carbon-coated bismuth nanospheres derived from Bi-BTC as a promising anode material for lithium storage. Electrochim Acta 325:134927. https://doi.org/10.1016/j.electa.2019.134927

    Article  CAS  Google Scholar 

  24. Wang HB, Zhang CJ, Liu ZH, Wang L et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434. https://doi.org/10.1039/c1jm00049g

    Article  CAS  Google Scholar 

  25. Yue HW, Chen SJ, Li PJ, Zhu CX, Yang XG, Li TT, Gao YH (2019) Lemongrass-like Bi2S3 as a high-performance anode material for lithium-ion batteries. Ionics 25:3587–3592. https://doi.org/10.1007/s11581-019-02932-7

    Article  CAS  Google Scholar 

  26. He YH, Lin YF, Jiang JW, Yang DR, Du N, He XQ, Ren JG, He P, Pang CL, Xiao CM, Chen YF, Bao L (2019) Litchi-structural core–shell Si@C for high-performance lithium-ion battery anodes. Ionics 25:5809–5818. https://doi.org/10.1007/s11581-019-03108-z

    Article  CAS  Google Scholar 

  27. Hou L, Deng SL, Jiang Y, Cui RW, Zhou YY, Guo YY, Gao FM (2021) A unique corn-like architecture composed of Se-doped carbon load Fe3O4 particles as high-performance lithium-ion battery anodes. Ionics 27:2825–2833. https://doi.org/10.1007/s11581-021-04049-2

    Article  CAS  Google Scholar 

  28. Zhong YT, Li B, Li SM, Xu SY et al (2018) Bi Nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett 10:56. https://doi.org/10.1007/s40820-018-0209-1

    Article  CAS  Google Scholar 

  29. Zhang TT, Olsson E, Choolaei M, Stolojan V (2020) Synthesis and electrochemical properties of Bi2MoO6 /carbon anode for lithium-ion battery application. Materials 13:1132. https://doi.org/10.3390/ma13051132

    Article  PubMed Central  CAS  Google Scholar 

  30. Zhang Y, Wang Q, Wang B, Mei Y, Lian PC (2017) N-doped graphene/Bi nanocomposite with excellent electrochemical properties for lithium–ion batteries. Ionics 23:1407–1415. https://doi.org/10.1007/s11581-017-1975-3

    Article  CAS  Google Scholar 

  31. Zhao YB, Manthiram A (2015) High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem Mater 27:3096–3101. https://doi.org/10.1021/acs.chemmater.5b00616

    Article  CAS  Google Scholar 

  32. Xiao Y, Zhang Z, Ma Z, Zhang GX, Feng CQ (2021) Synthesis and electrochemical properties of ZnFe2O4/C as novel anode material for lithium ion battery. Ionics 27:1377–1384. https://doi.org/10.1007/s11581-021-03931-3

    Article  CAS  Google Scholar 

  33. Hou TY, Fan AR, Sun XH, Zhang X, Xu ZK, Cai S, Zheng CM (2021) Improving cycling stability of Bi-encapsulated carbon fibers for lithium/sodium-ion batteries by Fe2O3 pinning. Chin Chem Lett 32:2459–2462. https://doi.org/10.1016/j.cclet.2021.01.049

    Article  CAS  Google Scholar 

  34. Lan J, Jin YQ, Qin CJ, Yu YH, Yang XP (2017) Bio-inspired rose-like Bi@nitrogen-enriched carbon towards high-performance lithium-ion batteries. Energy Environ Sci 2:7178–7184. https://doi.org/10.1002/slct.201701291

    Article  CAS  Google Scholar 

  35. Yang J, Xian JH, Liu QL, Sun YM, Li GQ (2022) Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries. J Energy Chem 69:524–530. https://doi.org/10.1016/j.jechem.2022.01.026

    Article  CAS  Google Scholar 

  36. Xu XJ, Wang ZS, Zhang DC, Zuo SY, Liu J, Zhu M (2020) Scalable one-pot synthesis of hierarchical Bi@C bulk with superior lithium-ion storage performances. ACS Appl Mater Interfaces 18:51478–51487. https://doi.org/10.1021/acsami.0c14757

    Article  CAS  Google Scholar 

  37. Yuan HC, Jin YQ, Chen XN, Lan JL, Yu YH, Yang XP (2019) Large-scale fabrication of egg-cartons-inspired Bi/C composite towards high volumetric capacity and long-life lithium-ion batteries. ACS Sustain Chem Eng 7:6033–6042. https://doi.org/10.1021/acssuschemeng.8b06149

    Article  CAS  Google Scholar 

  38. Fang W, Zhang NQ, Fan LS, Sun KN (2016) Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J Power Sources 333:30–36. https://doi.org/10.1016/j.jpowsour.2016.09.155

    Article  CAS  Google Scholar 

  39. Liu H, Yang MM, Yi Z, Duan T (2021) Bi2O3 /Bi nanocomposites confined by N-doped honeycomb-like porous carbon for high-rate and long-life lithium storage. Appl Mater Today 22:100885. https://doi.org/10.1016/j.apmt.2020.100885

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of Hebei Province (No. E2021209145).

Author information

Authors and Affiliations

Authors

Contributions

Chonghua Shi: made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work. Hang Fu: agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Jiajin Nie: approved the version to be published. Shaowei Yao: drafted the work or revised it critically for important intellectual content.

Corresponding author

Correspondence to Shaowei Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Fu, H., Nie, J. et al. Bi@C fibre synthesized by electrostatic spinning as high-performance anode material for Li-ion batteries. Ionics 28, 4977–4987 (2022). https://doi.org/10.1007/s11581-022-04763-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04763-5

Keywords

Navigation