Skip to main content

Advertisement

Log in

Cyclodextrin polymers as effective water-soluble binder with enhanced cycling performance for Li2ZnTi3O8 anode in lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymeric binders play an important role in maintaining the integrity of electrodes and improving the electrochemical performance of batteries. Unlike binders soluble in organic solvents, water-soluble binders are environmentally friendly and easy to recycle. In this work, a comparative study on the effects of water-soluble cyclodextrin and organic-based PVDF binders on the Li+ intercalation/deintercalation of lithium-ion batteries with Li2ZnTi3O8 anode is conducted for the first time. Compared to α-cyclodextrin, γ-cyclodextrin, and PVDF, LZTO with β-cyclodextrin binder exhibits larger Li+ storage capacity, better cycle stability, rate capability, and higher Coulombic efficiency, possessing a high electrical conductivity, low charge transfer resistance, and fast lithium-ion diffusion coefficient. β-Cyclodextrin water-soluble binder not only makes the active material difficult to separate from the current collector and facilitates favorable electrochemical kinetics but also maintains good cycle stability at high temperatures. Utilizing these advantageous features, β-Cyclodextrin-based LZTO electrode shows markedly improved reversible Li+ storage performance compared to those of other binder cases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  3. Wook Choi J, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:1–16

    Google Scholar 

  4. Liu Q, Su X, Lei D, Qin Y, Wen JG, Guo FM, Wu YA, Rong YC, Kou RH, Xiao XH, Aguesse F, Bareño J, Ren Y, Lu WQ, Li YX (2018) Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat Energy 3:936–943

    Article  CAS  Google Scholar 

  5. Wang C, Li ZH, Liu HM, Wang YG (2017) Improved electrochemical performance of a Li3V2(PO4)3 cathode in a wide potential window for lithium-ion storage by surface N-doped carbon coating and bulk K-doping. New J Chem 41:8772–8780

    Article  CAS  Google Scholar 

  6. Wang JJ, Sun XL (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  7. Liang GM, Peterson VK, See KW, Guo ZP, Pang WK (2020) Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J Mater Chem A 8:15373–15398

    Article  CAS  Google Scholar 

  8. Zhao BT, Deng X, Ran R, Liu ML, Shao ZP (2016) Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv Energy Mater 6:1500924

    Article  Google Scholar 

  9. Zhang H, Yang Y, Ren DS, Wang L, He XM (2021) Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Stor Mater 36:147–170

  10. Zhong HX, He AQ, Lu JD, Sun MH, He JR, Zhang LZ (2016) Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries. J Power Sources 336:107–114

    Article  CAS  Google Scholar 

  11. Jeong YK, Kwon TW, Lee I, Kim TS, Coskun A, Choi JW (2014) Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett 14:864–870

    Article  CAS  PubMed  Google Scholar 

  12. Ryou MH, Kim J, Lee I, Kim SJ, Jeong YK, Hong S, Ryu JH, Kim TS, Park JK, Lee H, Choi JW (2013) Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv Mater 25:1571–1576

    Article  CAS  PubMed  Google Scholar 

  13. Han ZJ, Yabuuchi N, Shimomura K, Murase M, Yuib H, Komaba S (2012) High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy Environ Sci 5:9014–9020

    Article  CAS  Google Scholar 

  14. Markevich E, Salitra G, Aurbach D (2005) Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem Commun 7:1298–1304

    Article  CAS  Google Scholar 

  15. Hwang SS, Sohn M, Park H.-Il, Choi J-M, Cho CG, Kim H (2016) Effect of the heat treatment on the dimensional stability of Si electrodes with PVDF binder. Electrochim Acta 211(356):363

    Google Scholar 

  16. Courtel FM, Niketic S, Duguay D, A.-Lebdeh Y, Davidson IJ (2011) Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J. Power Sources 196(2128):2134

    Google Scholar 

  17. Zhang Z, Zeng T, Qu C, Liu H, Jia M, Lai Y, Li J (2012) Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochim Acta 80:440–444

    Article  CAS  Google Scholar 

  18. Lux SF, Schappacher F, Balducci A, Passerini S, Winter M (2010) low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157(3):A320–A325

    Article  CAS  Google Scholar 

  19. Wang N, NuLi YN, Su SJ, Yang J, Wang JL (2017) Effects of binders on the electrochemical performance of rechargeable magnesium batteries. J Power Sources 341:219–229

    Article  CAS  Google Scholar 

  20. Zou F, Manthiram A (2020) A review of the design of advanced binders for high performance batteries. Adv Energy Mater 10:2002508

  21. Sano A, Kurihara M, Ogawa K, Iijima T, Maruyama S (2009) Decreasing the initial irreversible capacity loss of graphite negative electrode by alkali-addition. J Power Sources 192:703–707

    Article  CAS  Google Scholar 

  22. Chou SL, Wang JZ, Zhong C, Rahman MM, Liu HK, Dou SX (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54:7519–7524

    Article  CAS  Google Scholar 

  23. Kim GT, Jeong SS, Joost M, Rocca E, Winter M, Passerini S, Balducci A (2011) Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J Power Sources 196:2187–2194

    Article  CAS  Google Scholar 

  24. Li J, Kloepsch R, Nowak S, Kunze M, Winter M, Passerini S (2011) Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries. J Power Sources 196(18):7687–7691

    Article  CAS  Google Scholar 

  25. He M, Yuan LX, Zhang WX, Hu XL, Huang YH (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115:15703–15709

    Article  CAS  Google Scholar 

  26. Zhang ZA, Bao WZ, Lu H, Jia M, Xie KY, Lai YQ, Li J (2012) Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery. ECS Electrochem Lett 1:A34

    Article  CAS  Google Scholar 

  27. Bao WZ, Zhang ZA, Gan YQ, Wang XW, Lia J (2013) Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder. J Energy Chem 22:790–794

    Article  CAS  Google Scholar 

  28. Pan J, Xu GY, Ding B, Han JP, Dou H, Zhang XG (2015) Enhanced electrochemical performance of sulfur cathodes with a water-soluble binder. RSC Adv 5:13709–13714

    Article  CAS  Google Scholar 

  29. Qiu L, Shao ZQ, Wang DX, Wang WJ, Wang FJ, Wang JQ (2014) Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Carbohyd Polym 111:588–591

    Article  CAS  Google Scholar 

  30. Gaberscek M, Bele M, Drofenik J, Dominko R, Pejovnik S (2001) Improved carbon anode properties: pretreatment of particles in polyelectrolyte solution. J Power Sources 97:67–69

    Article  Google Scholar 

  31. Qiu LW, Shen YD, Fan HB, Yang XW, Wang C (2018) Carboxymethyl fenugreek gum: rheological characterization and as a novel binder for silicon anode of lithium-ion batteries. Int J Biol Macromol 115:672–679

    Article  CAS  PubMed  Google Scholar 

  32. Zhang ZA, Bao WZ, Lu H, Jia M, Xie KY, Lai YQ, Li J (2012) Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery. ECS Electrochem Lett 1(2):A34–A37

    Article  CAS  Google Scholar 

  33. Komaba S, Yabuuchi N, Ozeki T, Okushi K, Yui H, Konno K, Katayama Y, Miura T (2010) Functional binders for reversible lithium intercalation into graphite in propylene carbonate and ionic liquid media. J Power Sources 195:6069–6074

    Article  CAS  Google Scholar 

  34. Park HK, Kong BS, Oh ES (2011) Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem Commun 13:1051–1053

    Article  CAS  Google Scholar 

  35. Tang HQ, Weng Q, Tang ZY (2015) Chitosan oligosaccharides: a novel and efficient water soluble binder for lithium zinc titanate anode in lithium-ion batteries. Electrochim Acta 151:27–34

    Article  CAS  Google Scholar 

  36. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 333:75–79

    Article  Google Scholar 

  37. Ohta N, Sogabe T, Kuroda K (2001) A novel binder for the graphite anode of recharge-able lithium ion batteries for the improvement of reversible capacity. Carbon 39(9):1434–1436

    Article  CAS  Google Scholar 

  38. Liu J, Zhang Q, Sun Y-K (2018) Recent progress of advanced binders for Li-S batteries. J Power Sources 396:19–32

    Article  CAS  Google Scholar 

  39. Liu J, Sun MH, Zhang Q, Dong FF, Kaghazchi P, Fang YX, Zhang SQ, Lin Z (2018) A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li-S batteries. J Mater Chem A 6:7382–7388

    Article  CAS  Google Scholar 

  40. Hu LL, Zhang XD, Li B, Jin MH, Shen XH, Luo ZW, Tian ZY, Yuan LZ, Deng JK, Dai ZF, Song JX (2021) Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon anode in lithium-ion batteries. Chem Eng J 420:129991

    Article  CAS  Google Scholar 

  41. Jiao XX, Yin JQ, Xu XY, Wang JL, Liu YY, Xiong SZ, Zhang QL, Song JX (2020) Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries, Adv Funct Mater. 2005699

  42. Hu LL, Zhang XD, Zhao PY, Fan H, Zhang Z, Deng JK, Ungar G, Song JX (2021) Gradient H-bonding binder enables stable high-areal-capacity Si-based anodes in pouch cells. Adv Mater. 2104416

  43. Liu T, Tang HQ, Liu JY, Pu YJ, Zhang J, Lu ZW, Li W, Tang ZY, Ding F (2018) Improved electrochemical performance of Li2ZnTi3O8 using carbon materials as loose and porous agent. Electrochim. Acta 259:28–35

    Article  CAS  Google Scholar 

  44. Miao XW, Ni H, Zhang H, Wang CG, Fang JH, Yang G (2014) Li2ZrO3-coated 0.4 Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery. J. Power Sources 264:147–154

    Article  CAS  Google Scholar 

  45. Ge H, Li N, Li D, Dai C, Wang D (2008) Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V. Electrochem. Commun. 10:719–722

    Article  CAS  Google Scholar 

  46. Borghols WJH, Wagemaker M, Lafont U, Kelde EM, Mulder FM (2009) Size effects in the Li4+xTi5O12 spinel. J. Am Chem. Soc. 131:17786–17792

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen MHT, Oh E-S (2015) Improvement of the characteristics of poly(acrylonitrile–butylacrylate) water-dispersed binder for lithium-ion batteries by the addition of acrylic acid and polystyrene seed. J Electroanal Chem 739:111–114

    Article  CAS  Google Scholar 

  48. Qin JL, Zhu HL, Lun N, Qi YX, Bai YJ (2020) Li2ZnTi3O8/C anode with high initial Coulombic efficiency, long cyclic life and outstanding rate properties enabled by fulvic acid. Carbon 163:297–307

    Article  CAS  Google Scholar 

  49. Kuvshinov A, Pesin L, Chebotaryov S, Kuznetsov M, Evsyukov S, Sapozhnikova T, Mirzoev A (2008) Kinetics of radiation-induced carbonization of poly(vinylidene fluoride) film surface. Polym Degrad Stab 93:1952–1955

    Article  CAS  Google Scholar 

  50. El Mohajir B-E, Heymans N (2001) Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1 Change in structure. Polymer 42:5661–5667

    Article  Google Scholar 

  51. Wang F, Borodin O, Gao T, Fan XL, Sun W, Han FD, Faraone A, Dura JA, Xu K, Wang CS (2018) Highly reversible zinc metal anode for aqueous batteries. Nat Mater 17:543–549

    Article  CAS  PubMed  Google Scholar 

  52. Ai LH, Gao XY, Jiang J (2014) In situ synthesis of cobalt stabilized on macroscopic biopolymer hydrogel as economical and recyclable catalyst for hydrogen generation from sodium borohydride hydrolysis. J Power Sources 257:213–220

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51702081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoqing Tang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 549 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Han, Z., Weng, Q. et al. Cyclodextrin polymers as effective water-soluble binder with enhanced cycling performance for Li2ZnTi3O8 anode in lithium-ion batteries. Ionics 28, 669–682 (2022). https://doi.org/10.1007/s11581-021-04374-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04374-6

Keywords

Navigation