Skip to main content

Advertisement

Log in

Fe2O3/nitrogen-doped carbon nanotube composites as positive electrode for high-performance asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

By the simple hydrothermal and high-temperature carbonization, we report the design of a novel Fe2O3 nanoparticles laden nitrogen-doped carbon nanotube composite (Fe2O3/NC) for high-performance energy storage. The homogeneous dispersion of Fe2O3 nanoparticles on NC provides excellent electron transfer, and its porous structure with mesopore volume facilitates rapid ion transport. The Fe2O3/NC composite material has high specific capacity (840.9 C g−1 at 1A g−1) and good rate performance (85.1% of the capacitance retention from 1 to 10 A g−1). Furthermore, a wide working potential window (0–1.5V) was assembled by the asymmetric supercapacitor with Fe2O3/NC composite as the positive and NC as negative electrode, respectively. The asymmetric supercapacitor exhibits good rate capability (70% of the capacitance retention from 1 to 10 A g−1) and high energy density (46.5 Wh kg−1 at 765.8 W kg−1). More importantly, the assembled device demonstrates a splendid cycling performance (93.2% capacitance retention after 5000 cycles). The composites with remarkable capacitive performance inspire us to develop superior electrode materials for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  PubMed  Google Scholar 

  2. Balu R, Dakshanamoorthy A (2021) A simple hydrothermal synthesis of cadmium sulfide wrapped on graphene nanocomposite for supercapacitor applications. Nanosci Nanotechnol 21:5835–3845. https://doi.org/10.1166/jnn.2021.19503

    Article  CAS  Google Scholar 

  3. C.M Gopi, R Vinodh, S Sambasivam (2020), Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. Journal of Energy Storage 27. https://doi.org/10.1016/j.est.2019.101035

  4. Qu ZC, Shi MJ, Wu HZ, Liu YC, Jiang JT, Yan C (2019) An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J Power Sources 410-411:179–187. https://doi.org/10.1016/j.jpowsour.2018.11.018

    Article  CAS  Google Scholar 

  5. Ling XM, Zhang PZ, Li RS, Fan DW, Yao XM (2012) Electron field emission of iron and cobalt-doped DLC films fabricated by electrochemical deposition. Surf Interface Anal 45:943–948. https://doi.org/10.1002/sia.5186

    Article  CAS  Google Scholar 

  6. Fuzail SM, Khan E, Alam T (2019) Synthesis of MoO3/polypyrrole nanocomposite and its adsorptive properties toward cadmium (II) and nile blue from aqueous solution: equilibrium isotherm and kinetics modeling. Environ Prog Sustain Energy 15. https://doi.org/10.1002/ep.13249

  7. Can CE, Gonul H, Yilmaz A (2020) A comprehensive study: theoretical and experimental investigation of heteroatom and substituent effects on frontier orbitals and polymer solar cell performances. J Polym Sci 56:2792–2806. https://doi.org/10.1002/pol.20200513

    Article  CAS  Google Scholar 

  8. Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single crystalline Fe2O3 particles/graphene composite hydrogels as high-performance anode materials for supercapacitors. Nano Energy 7:86–96. https://doi.org/10.1016/j.nanoen.2014.04.009

    Article  CAS  Google Scholar 

  9. Zeng Y, Han Y, Zhao Y, Zeng Y, Yu M, Liu Y, Tang H, Tong Y, Lu X (2015) Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5:1402176. https://doi.org/10.1002/aenm.201402176

    Article  CAS  Google Scholar 

  10. Song Y, Liu T, Li M, Yao B, Kou T, Feng D, Wang F, Tong Y, Liu X, Li Y (2018) Engineering of mesoscale pores in balancing mass loading and rate capability of hematite films for electrochemical capacitors. Adv Energy Mater 8:1801784. https://doi.org/10.1002/aenm.201801784

    Article  CAS  Google Scholar 

  11. Lu X, Zeng Y, Yu M, Zhai T, Liang C, Xie S, Balogun M, Tong Y (2014) Oxygen deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26:3148–3155. https://doi.org/10.1002/adma.201305851

    Article  CAS  PubMed  Google Scholar 

  12. Gupta A, Sardana S, Dalal J, Lather S, Maan AS, Tripathi R, Puniaa R, Singhd K (2020) Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. Applied Energy Materials 3:6434–6446. https://doi.org/10.1021/acsaem.0c00684

    Article  CAS  Google Scholar 

  13. Hujel R, Raia S, Deka U, Bibhu P, Swain (2019) Electrochemical, bonding network and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications. J Alloys Compd 792:250–259. https://doi.org/10.1016/j.jallcom.2019.04.004

    Article  CAS  Google Scholar 

  14. Jayashree M, Parthibavarman M, Prabhakaran S (2019) Hydrothermal-induced alpha-Fe2O3/graphene nanocomposite with ultrahigh capacitance for stabilized and enhanced supercapacitor electrodes. Ionics 25:3309–3319. https://doi.org/10.1007/s11581-019-02859-z

    Article  CAS  Google Scholar 

  15. Tian Y, Hu X, Wang Y, Chen L, Wu X (2019) Fe2O3 nanoparticles decorated on graphene-carbon nanotubes conductive networks for boosting the energy density of all-solid state asymmetric supercapacitor. Sustainable Chem 7:9211–9219. https://doi.org/10.1021/acssuschemeng.8b06857

    Article  CAS  Google Scholar 

  16. Li Y, Kang L, Bai G, Li P, Deng J, Liu X, Yang Y, Gao F, Liang W (2014) Solvothermal synthesis of Fe2O3 loaded activated carbon as electrode materials for high performance electrochemical capacitors. Electrochim Acta 134:67–75. https://doi.org/10.1016/j.electacta.2014.04.094

    Article  CAS  Google Scholar 

  17. Geerthana M, Prabhu S, Harish S, Navaneethan M, Ramesh R, Selvaraj M (2021), Design and preparation of ternary α-Fe2O3/SnO2/rGO nanocomposite as an electrode material for supercapacitor. Journal of Materials Science. https://doi.org/10.1007/s10854-021-06128-6

  18. Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X (2013) All-solid-state flexible ultrathin micro-supercapacitors based on graphene. Adv Mater 25:4035–4042. https://doi.org/10.1002/adma.201301332

    Article  CAS  PubMed  Google Scholar 

  19. He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  PubMed  Google Scholar 

  20. Jiang X, Shi G, Wang G, Mishra P, Du J, Zhang Y (2020) Fe2O3/hemp straw-based porous carbon composite for supercapacitor electrode materials. Ionics 26:4039–4651. https://doi.org/10.1007/s11581-020-03547-z

    Article  CAS  Google Scholar 

  21. Arun T, Prabakaran K, Udayabhaskar R, Mangalaraja RV, Akbarifakhrabadi A (2019) Carbon decorated octahedral shaped Fe3O4 and alpha-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Appl Surf Sci 485:147–157. https://doi.org/10.1016/j.apsusc.2019.04.177

    Article  CAS  Google Scholar 

  22. Xu G, Ding B, Nie P, Shen L, Wang J, Zhang X (2013) Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Chem Eur J 19:2306–12312. https://doi.org/10.1016/j.apsusc.2019.04.177

    Article  CAS  Google Scholar 

  23. Chen J, Xu J, Zhou S, Zhao N, Wong C (2016) Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25:93–202. https://doi.org/10.1016/j.nanoen.2016.04.037

    Article  CAS  Google Scholar 

  24. Kim JI, Park SJ (2011) Effect of nitrogen-containing groups on enhanced capacitive behaviors of multi-walled carbon nanotubes. J Solid State Chem 184:2184–2189. https://doi.org/10.1016/j.jssc.2011.05.038

    Article  CAS  Google Scholar 

  25. He YZ, Han XJ, Du YC, Song B, Zhang B, Zhang W, Xu P (2018) Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res 11:2573–2585. https://doi.org/10.1007/s12274-017-1882-y

    Article  CAS  Google Scholar 

  26. Chen Y, Zhou S, Wei TJ, Fang HX, Li YF (2019) Preparation and properties of polypyrrole composite fabric by soft template process. Journal of Textile Research 40:93–97

    Google Scholar 

  27. Gao RR, Wang SQ, Xu ZX, Li HB, Chen SL, Hou HQ (2020) High-performance anode materials with superior structure of Fe3O4/FeS/rGO composite for lithium ion batteries. Nano 15:2050128. https://doi.org/10.1142/S1793292020501283

    Article  CAS  Google Scholar 

  28. Chen W, Wang J, Ma KY, Li M, Guo SH, Liu F, Cheng JP (2018) Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor. Appl Surf Sci 451:280–288. https://doi.org/10.1016/j.apsusc.2018.04.254

    Article  CAS  Google Scholar 

  29. Jiang L, Sui Y, Qi J, Chang Y, He Y, Wei F, Meng Q, Sun Z (2016) Electrodeposition of Ni-Co double hydroxide composite nanosheets on Fe substrate for high-performance supercapacitor electrode. Micro & Nano Letters 11:837–839. https://doi.org/10.1049/mnl.2016.0485

    Article  CAS  Google Scholar 

  30. Ashutosh K, Mandal K (2015) Engineering of high-performance supercapacitor electrode based on Fe-Ni/ Fe2O3-NiO core/shell hybrid nanostructures. J Appl Phys 117:105101. https://doi.org/10.1063/1.4913218

    Article  CAS  Google Scholar 

  31. Berenguer JPM-L, Qui J, Cazorla-Amoros D, Morall E (2012) A comparison between oxidation of activated carbon by electrochemical and chemical treatments. Carbon 50:1123–1134. https://doi.org/10.1016/j.carbon.2011.10.025

    Article  CAS  Google Scholar 

  32. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134:6751–6761. https://doi.org/10.1021/ja300823a

    Article  CAS  PubMed  Google Scholar 

  33. Faryal A, Shahid T, Shahid U, Samina G, Hatice D, Katrin K, Salman A (2020) Encapsulation of Fe/Fe3O4 in carbon nanotubes grown over carbon nanofibers for high performance supercapacitor electrodes. Synth Met 269:116575. https://doi.org/10.1016/j.synthmet.2020.116575

    Article  CAS  Google Scholar 

  34. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120:379–382. https://doi.org/10.1002/ange.200990037

    Article  Google Scholar 

  35. Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324. https://doi.org/10.1016/j.carbon.2015.05.056

    Article  CAS  Google Scholar 

  36. Hassan M, Qiu W, Song X, Mao Q, Ren S, Hao C (2020) Supercapacitive and ORR performances of nitrogen-doped hollow carbon spheres pyrolyzed from polystyrene@polypyrrole-polyaniline. J Alloys Compd 818:152890. https://doi.org/10.1016/j.jallcom.2019.152890

    Article  CAS  Google Scholar 

  37. Zhang P, Liu J, Wu J, Wang W, Zhou C, Guo S, Li S, Yang Y, Chen L (2020) Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage. Materials Today Energy 17:100451. https://doi.org/10.1016/j.mtener.2020.100451

    Article  Google Scholar 

  38. Smolin YY, Aken KLV, Boota M, Soroush M, Gogotsi Y, Lau KKS (2017) Engineering ultrathin polyaniline in micro/mesoporous carbon supercapacitor electrodes using oxidative chemical vapor deposition. Adv Mater Interfaces 4:1601201. https://doi.org/10.1002/admi.201601201

    Article  CAS  Google Scholar 

  39. Liu W, Zhu M, Liu J, Li X, Liu J (2019) Flexible asymmetric supercapacitor with high energy density based on optimized MnO2 cathode and Fe2O3 anode. Chin Chem Lett 30:750–756. https://doi.org/10.1016/j.cclet.2018.09.013

    Article  CAS  Google Scholar 

  40. Ma YW, Jiang SJ, Jian GQ, Tao HS, Yu LS, Wang XB, Wang XZ, Zhu JM, Hu Z, Chen Y (2008) CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. Energy Environ Sci 2:224–229. https://doi.org/10.1039/b807213m

    Article  CAS  Google Scholar 

  41. J Zhou, E.R Fisher (2004), Synthesis and properties of plasma-polymerized polypyrrole/Au composite nanofibers. J Nanosci Nanotechnol 4:539-547. https://doi.org/10.1166/jnn.2004.083

  42. Wei D, Wu WL, Zhu JF, Wang CW, Zhao CH, Wang L (2020) A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. J Electroanal Chem 877:114538. https://doi.org/10.1016/j.jelechem.2020.114538

    Article  CAS  Google Scholar 

  43. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  PubMed  Google Scholar 

  44. Hu Y, Liu H, Ke Q, Wang J (2014) Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J Mater Chem 2(30):11753–11758. https://doi.org/10.1039/C4TA01269K

    Article  CAS  Google Scholar 

  45. Shen WZ, Fan WB (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1:999–1013. https://doi.org/10.1039/C2TA00028H

    Article  CAS  Google Scholar 

  46. Liu H, Song H, Chen X, Zhang S, Zhou J, Ma Z (2015) Effects of nitrogen- and oxygen- containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. Power Sources 285:303–309. https://doi.org/10.1016/j.jpowsour.2015.03.115

    Article  CAS  Google Scholar 

  47. Wang WW, Zhang PL, Li S, Zhou CC, Guo SZ, Liu JZ, Zhou JJ, Jian X, Yang Y, Lei YH, Li K, Wu J, Chen LY (2020) Nitrogen-doped carbon-wrapped porous FeMnO3 nanocages derived from etched prussian blue analogues as high-performance anode for lithium-ion batteries. J Power Sources 475:228683. https://doi.org/10.1016/j.jpowsour.2020.228683

    Article  CAS  Google Scholar 

  48. Yu M, Sun LY, Ning XH (2021) Controllable synthesis of carbon-coated Fe3O4 nanorings with high Li/Na storage performance. J Alloys Compd 878:160359. https://doi.org/10.1016/j.jallcom.2021.160359

    Article  CAS  Google Scholar 

  49. Ma YW, Jiang SJ, Jian GQ, Tao HS, Yu LS, Wang XB, Wang XH, Zhu JN, Hu Z, Chen Y (2009) CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. Energy Environ Sci 2:224–229. https://doi.org/10.1039/B807213M

    Article  CAS  Google Scholar 

  50. Niu SQ, Li SW, Hu J, Li YZ, Du YC, Han XJ, Xu P (2019) Fabrication of uniform Ru-doped NiFe2O4 nanosheets as efficient hydrogen evolution electrocatalyst. Chem Commun 55:14649–14652. https://doi.org/10.1039/C9CC07651D

    Article  CAS  Google Scholar 

  51. Yang LJ, Ding H, Xu GC, Zhang L, Wei B (2021) Efficient ORR activity of N-doped porous carbon encapsulated cobalt electrocatalyst derived from a novel bimetal-organic framework. Mater Res Bull 138:111237. https://doi.org/10.1016/j.materresbull.2021.111237

    Article  CAS  Google Scholar 

  52. Yu Q, Dong T, Qiu RY, Wang HW (2021) Sulfur and nitrogen dual-doped carbon nanofiber with enlarged interlayer distance as a superior anode material for sodium-ion capacitors. Mater Res Bull 138:111211. https://doi.org/10.1016/j.materresbull.2021.111211

    Article  CAS  Google Scholar 

  53. Ma KY, Liu F, Zhang MB, Zhang XB, Cheng JP (2017) Core/shell microrod arrays of NiO/Co-Fe layered double hydroxides deposited on nickel foam for energy storage and conversion. Electrochim Acta 225:425–434. https://doi.org/10.1016/j.electacta.2016.12.163

    Article  CAS  Google Scholar 

  54. Nam HW, Gopi CVVM, Sambasivam S, Vinodh R, Raghavendra KVG, Kim H-J, Obaidat IM, Kim S (2020) Binder-free honey-comb-like FeMoO4 nano sheet arrays with dual properties of both battery-type and pseudocapacitive-type performances for supercapacitor applications. Energy Storage 27:101055. https://doi.org/10.1016/j.est.2019.101055

    Article  Google Scholar 

  55. Liu J, Liu SQ, Zhuang SX, Wang XW, Tu FY (2013) Synthesis of carbon-coated Fe3O4 nanorods as electrode material for supercapacitor. Ionics 19:1255–1261. https://doi.org/10.1007/s11581-013-0857-6

    Article  CAS  Google Scholar 

  56. Yang X, Tian YR, Sarwar S, Zhang MM, Zhang HP, Luo JJ, Zhang XY (2019) Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochim Acta 311:230e243. https://doi.org/10.1016/j.electacta.2019.04.084

    Article  CAS  Google Scholar 

  57. Yan LJ, Niu LY, Shen C, Zhang ZK, Lin JH, Shen FY, Gong YY, Li C, Liu XJ, Xu SQ (2019) Modulating the electronic structure and pseudo-capacitance of d-MnO2 through transitional metal M (M¼ Fe, Co and Ni) doping. Electrochim Acta 306:329–340. https://doi.org/10.1016/j.electacta.2019.03.174

    Article  CAS  Google Scholar 

  58. Ghadimia LS, Arsalania N, Tabrizia AG, Mohammadib A, Ahadzadehc I (2018) Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor. Electrochim Acta 282:116e127. https://doi.org/10.1016/j.electacta.2018.05.160

    Article  CAS  Google Scholar 

  59. Yang GJ, Park SJ (2020) Nanoflower-like NiCo2O4 grown on biomass carbon coated nickel foam for asymmetric supercapacitor. J Alloys Compd 835:155270. https://doi.org/10.1016/j.jallcom.2020.155270

    Article  CAS  Google Scholar 

  60. Dai SG, Bai YC, Shen WX, Zhang S, Hu H, Fu JW, Wang XC, Hu CG, Liu ML (2021) Core-shell structured Fe2O3@Fe3C@C nanochains and Ni-Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor. J Power Sources 482:22891. https://doi.org/10.1016/j.jpowsour.2020.228915

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the reviewers for their contribution in ensuring the quality of the article.

Funding

We thank the financial support from NSFC (52102235) and Youth Foundation of Natural Science Foundation of Hebei Province (No. C2020202009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enshan Han or Yanzhen He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Han, E., He, Y. et al. Fe2O3/nitrogen-doped carbon nanotube composites as positive electrode for high-performance asymmetric supercapacitors. Ionics 28, 2943–2955 (2022). https://doi.org/10.1007/s11581-022-04472-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04472-z

Keywords

Navigation