Skip to main content

Advertisement

Log in

Low temperature synthesis of Li0.33La0.55TiO3 solid electrolyte with Al3+ doping by a modified Pechini method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

By modifying the preparation process of Pechini method, we can improve the structure of Li0.33La0.55TiO3 (LLTO) crystalline powder, so as to obtain high-density LLTO solid electrolyte. Through optimizing the sintering process, LLTO powder with good dispersion and uniform particle size was calcined at 800 °C; afterwards, the LLTO solid electrolyte samples with excellent properties were prepared by sintering at 1250 °C. The LLTO samples showed a low activation energy of 0.32 eV, a high relative density of 91.2%, and a high ionic conductivity of 2.7 × 10−5 S/cm. By adding three different aluminum salts, the ionic conductivity of Al3+-doped LLTO (A-LLTO) was further improved significantly. Especially in this case, with 30-nm Al2O3 doped, the conductivity of A-LLTO was increased to 4.7 × 10−5 S/cm, the activation energy was reduced to 0.30 eV, and the relative density was increased to 92.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10
Fig 11

Similar content being viewed by others

References

  1. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363. https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  2. Mao W, Ai G, Dai Y et al (2016) In-situ synthesis of MnO2@CNT microsphere composites with enhanced electrochemical performances for lithium-ion batteries. J Power Sources 310:54. https://doi.org/10.1016/j.jpowsour.2016.02.002

    Article  CAS  Google Scholar 

  3. Tang H, Zho Y, Zan L, Zhao N, Tang Z (2016) Long cycle life of carbon coated lithium zinc titanate using copper as conductive additive for lithium ion batteries. Electrochim Acta 191:887. https://doi.org/10.1016/j.electacta.2016.01.141

    Article  CAS  Google Scholar 

  4. Xie J, Zhang Q (2016) Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. Journal of Materials Chemistry A 4:7091. https://doi.org/10.1039/c6ta01069e

    Article  CAS  Google Scholar 

  5. Wang H-G, Yuan S, Ma D-L, Zhang X-B, Yan J-M (2015) Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci 8:1660. https://doi.org/10.1039/c4ee03912b

    Article  CAS  Google Scholar 

  6. Ulissi U, Agostini M, Ito S, Aihara Y, Hassoun J (2016) All solid-state battery using layered oxide cathode, lithium-carbon composite anode and thio-LISICON electrolyte. Solid State Ionics 296:13. https://doi.org/10.1016/j.ssi.2016.08.014

    Article  CAS  Google Scholar 

  7. Hayashi A, Nishio Y, Kitaura H, Tatsumisago M (2008) Novel technique to form electrode-electrolyte nanointerface in all-solid-state rechargeable lithium batteries. Electrochem Commun 10:1860. https://doi.org/10.1016/j.elecom.2008.09.026

    Article  CAS  Google Scholar 

  8. Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries. J Power Sources 196:2452. https://doi.org/10.1016/j.jpowsour.2010.11.001

    Article  CAS  Google Scholar 

  9. Ritchie A, Howard W (2006) Recent developments and likely advances in lithium-ion batteries. J Power Sources 162:809. https://doi.org/10.1016/j.jpowsour.2005.07.014

    Article  CAS  Google Scholar 

  10. AKM Ahasan Habib, SMA Motakabber, MI Ibrahimy (2019) A comparative study of electrochemical battery for electric vehicles applications. https://doi.org/10.1109/PEEIACON48840.2019.9071955

  11. Gong Y, Zhang J, Jiang L et al (2017) In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J Am Chem Soc 139:4274. https://doi.org/10.1021/jacs.6b13344

    Article  CAS  PubMed  Google Scholar 

  12. L Wang, J Su, S Liu, et al. (2018) Interfacial issues of all solid state lithium batteries. Transactions of Nanjing University of Aeronautics & Astronautics 35: 578. https://doi.org/10.16356/j.1005-1120.2018.04.578

  13. Wang C, Yang Y, Liu X et al (2017) Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl Mater Interfaces 9:13694. https://doi.org/10.1021/acsami.7b00336

    Article  CAS  PubMed  Google Scholar 

  14. Adachi GY, Imanaka N, Tamura S (2002) Ionic conducting lanthanide oxides. Chem Rev 102:2405. https://doi.org/10.1021/cr0103064

    Article  CAS  PubMed  Google Scholar 

  15. Gao X, Fisher CAJ, Kimura T et al (2014) Domain boundary structures in lanthanum lithium titanates. Journal of Materials Chemistry A 2:843. https://doi.org/10.1039/c3ta13726k

    Article  CAS  Google Scholar 

  16. Moriwake H, Gao X, Kuwabara A et al (2015) Domain boundaries and their influence on Li migration in solid-state electrolyte (La, Li)TiO3. J Power Sources 276:203. https://doi.org/10.1016/j.jpowsour.2014.11.139

    Article  CAS  Google Scholar 

  17. Gao X, Fisher CAJ, Kimura T et al (2013) Lithium atom and A-site vacancy distributions in lanthanum lithium titanate. Chem Mater 25:1607. https://doi.org/10.1021/cm3041357

    Article  CAS  Google Scholar 

  18. T Teranishi, Y Ishii, H Hayashi, A Kishimoto (2016) Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol–gel process. Solid State Ionics 284: 1. https://doi.org/10.1016/j.ssi.2015.11.029

  19. P Zhu, C Yan, M Dirican, et al. (2018) Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A 6: 4279. https://doi.org/10.1039/c7ta10517g

  20. S Sasano, R Ishikawa, K Kawahara, et al. (2020) Grain boundary Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal. Applied Physics Letters 116. https://doi.org/10.1063/1.5141396

  21. Lu DL, Zhao RR, Wu JL et al (2020) Investigations on the properties of Li3xLa2/3-xTiO3 based all-solid-state supercapacitor: relationships between the capacitance, ionic conductivity, and temperature. J Eur Ceram Soc 40:2396. https://doi.org/10.1016/j.jeurceramsoc.2020.02.006

    Article  CAS  Google Scholar 

  22. Braun P, Uhlmann C, Weber A, Störmer H, Gerthsen D, Ivers-Tiffée E (2017) Separation of the bulk and grain boundary contributions to the total conductivity of solid lithium-ion conducting electrolytes. J Electroceram 38:157. https://doi.org/10.1007/s10832-016-0061-y

    Article  CAS  Google Scholar 

  23. Du C-h Chen J (2015) Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations. J Am Ceram Soc 98:534. https://doi.org/10.1111/jace.13307

    Article  CAS  Google Scholar 

  24. Thangadurai V, Weppner W (2000) Effect of B-site substitution of (Li, La)TiO3 perovskites by di-, tri-, tetra- and hexavalent metal ions on the lithium ion conductivity. Ionics 6:70. https://doi.org/10.1007/bf02375549

    Article  CAS  Google Scholar 

  25. Le HTT, Kalubarme RS, Duc Tung N et al (2015) Citrate gel synthesis of aluminum-doped lithium lanthanum titanate solid electrolyte for application in organic-type lithium-oxygen batteries. J Power Sources 274:1188. https://doi.org/10.1016/j.jpowsour.2014.10.146

    Article  CAS  Google Scholar 

  26. S Ulusoy, S Gulen, G Aygun, L Ozyuzer, M Ozdemir (2018) Characterization of thin film Li0.5La0.5Ti1-xAlxO3 electrolyte for all-solid-state Li-ion batteries. Solid State Ionics 324: 226. https://doi.org/10.1016/j.ssi.2018.07.005

  27. Q Wang, J Zhang, X He, et al. (2019) Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0.35La0.55TiO3-based solid batteries. J. Eur. Ceram. Soc. 39: 3332. https://doi.org/10.1016/j.jeurceramsoc.2019.04.045

  28. Morata-Orrantia A, Garcia-Martin S, Moran E, Alario-Franco MA (2002) A new La2/3LixTi1-xAlxO3 solid solution: structure, microstructure, and Li+ conductivity. Chem Mater 14:2871. https://doi.org/10.1021/cm011149s

    Article  CAS  Google Scholar 

  29. Y Huang, Y Jiang, Y Zhou, X Liu, X Zeng, X Zhu (2021) One-step low-temperature synthesis of Li0.33La0.55TiO3 solid electrolytes by tape casting method. Ionics 27: 145. https://doi.org/10.1007/s11581-020-03823-y

  30. Y Huang, X Liu, Y Jiang, X Zhu (2021) Synthesis of textured Li0.33La0.55TiO3 solid electrolytes by molten salt method. Ceramics International. https://doi.org/10.1016/j.ceramint.2021.01.003

  31. M Chen, C Huang, Y Li, et al. (2019) Perovskite-type La0.56Li0.33TiO3 as an effective polysulfide promoter for stable lithium–sulfur batteries in lean electrolyte conditions. Journal of Materials Chemistry A 7: 10293. https://doi.org/10.1039/c9ta01500k

  32. MW Khalid, YI Kim, MA Haq, et al. (2021) Densification behavior of microwave hybrid sintered Al2O3 bimodal powder mixtures and comparison with 3D modeling and simulation. International Journal of Refractory Metals and Hard Materials 99. https://doi.org/10.1016/j.ijrmhm.2021.105586

  33. Zhang Z, Shao Y, Lotsch B et al (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11:1945. https://doi.org/10.1039/c8ee01053f

    Article  CAS  Google Scholar 

  34. Y Harada, T Ishigaki, H Kawai, J Kuwano (1998) Lithium ion conductivity of polycrystalline perovskite La0.67-xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ionics 108: 407. https://doi.org/10.1016/s0167-2738(98)00070-8

  35. Morata-Orrantia A, Garcia-Martin S, Alario-Franco MA (2003) Optimization of lithium conductivity in La/Li titanates. Chem Mater 15:3991. https://doi.org/10.1021/cm0300563

    Article  CAS  Google Scholar 

  36. Ban CW, Choi GM (2001) The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics 140:285. https://doi.org/10.1016/s0167-2738(01)00821-9

    Article  CAS  Google Scholar 

  37. Zhong WL, Jiang B, Zhang PL et al (1993) Phase-transition in PbTiO3 ultrafine particles of different sizes. Journal of Physics-Condensed Matter 5:2619. https://doi.org/10.1088/0953-8984/5/16/018

    Article  CAS  Google Scholar 

  38. Wu Y-J, Tanaka T, Komori T et al (2020) Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes. Sci Technol Adv Mater 21:712. https://doi.org/10.1080/14686996.2020.1824985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho SY, Park KS, Shim JE et al (2002) An integrated proteome database for two-dimensional electrophoresis data analysis and laboratory information management system. Proteomics 2:1104. https://doi.org/10.1002/1615-9861(200209)2:9%3c1104::Aid-prot1104%3e3.0.Co;2-q

    Article  CAS  PubMed  Google Scholar 

  40. L Cheng, W Chen, M Kunz, et al. (2015) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes.Acs Applied Materials & Interfaces 7: 2073. https://doi.org/10.1021/am508111r

  41. Ma C, Chen K, Liang CD et al (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7:1638. https://doi.org/10.1039/c4ee00382a

    Article  CAS  Google Scholar 

  42. NRL Bin Feng, Akihito Kumamoto, Yuichi Ikuhara, and Naoya Shibata (2017) Direct observation of oxygen vacancy distribution across yttria-stabilized zirconia grain boundaries. ASC nano 11. https://doi.org/10.1021/acsnano.7b05943

  43. Feng B, Yokoi T, Kumamoto A, Yoshiya M, Ikuhara Y, Shibata N (2016) Atomically ordered solute segregation behaviour in an oxide grain boundary. Nat Commun 7:11079. https://doi.org/10.1038/ncomms11079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guo X, Waser R (2006) Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci 51:151. https://doi.org/10.1016/j.pmatsci.2005.07.001

    Article  CAS  Google Scholar 

  45. S Qin, X Zhu, Y Jiang, Me Ling, Z Hu, J Zhu (2018) Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Applied Physics Letters 112. https://doi.org/10.1063/1.5019179

  46. M Ling, X Zhu, Y Jiang, J Zhu (2016) Comparative study of solid-state reaction and sol-gel process for synthesis of Zr-doped Li0.5La0.5TiO3 solid electrolytes. Ionics 22: 2151. https://doi.org/10.1007/s11581-016-1744-8

  47. Kim KM, Shin DO, Lee Y-G (2015) Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x(PO4)(3) solid electrolytes. Electrochim Acta 176:1364. https://doi.org/10.1016/j.electacta.2015.07.170

    Article  CAS  Google Scholar 

  48. Takatori K, Saura K, Orum A, Kadoura H, Tani T (2016) Textured lithium lanthanum titanate polycrystals prepared by a reactive-templated grain growth method. J Eur Ceram Soc 36:551. https://doi.org/10.1016/j.jeurceramsoc.2015.10.012

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2013CB934700), Sichuan Science and Technology Program (Grant No. 2020YFH0047), and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.02 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., He, L. & Zhu, X. Low temperature synthesis of Li0.33La0.55TiO3 solid electrolyte with Al3+ doping by a modified Pechini method. Ionics 28, 1739–1751 (2022). https://doi.org/10.1007/s11581-021-04422-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04422-1

Keyword

Navigation