Skip to main content

Advertisement

Log in

Facile synthesis of porous rod-like CuCo2O4 nano-materials for high energy density asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Efficient and low-cost electrode materials play a key role in improving the performance of energy storage device. In this study, the porous rod-like CuCo2O4 nano-materials are synthesized by a simple hydrothermal method and subsequent heating annealing procedure. Benefiting from its advantages of the unique porous rod-like architectures with large specific surface area (98.27 m2 g−1), the as-prepared CuCo2O4 electrode displays a high specific capacitance of 778.29 F g−1 at 1 A g−1, excellent rate capability (85.79% capacitance retention at 16 A g−1), and ultra-long cycling lifespan (91.65% specific capacitance retention after 4000 cycles) through the three-electrode system test. When assembled into the CuCo2O4//AC-ASC cell device, it provides a maximum energy density of 64.03 Wh/kg at a power density of 800.01 W/kg and extraordinary cycling stability (85.39% retention after 5000 cycles). These results firmly verify that the porous rod-like CuCo2O4 nano-materials have great potential application for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen T, Li M, Song S, Kim P, Bae J (2020) Biotemplate preparation of multilayered TiC nanoflakes for high performance symmetric supercapacitor. Nano Energy 71:104549

    Article  CAS  Google Scholar 

  2. Li J, Luo S, Zhang B, Lu J, Liu W, Zeng Q, Wan J, Han X, Hu C (2021) High-performance asymmetric Mn(OH)2//Fe2O3 supercapacitor achieved by enhancing and matching respective propertied of cathode and anode materials. Nano Energy 79:105410

    Article  CAS  Google Scholar 

  3. Raj CJ, Manikandan R, Rajesh M, Sivakumar P, Jung H, Das SJ, Kim BC (2021) Cornhusk mesoporous activated carbon electrodes and seawater electrolyte: the sustainable sources for assembling retainable supercapacitor module. J Power Sources 490:229518

    Article  CAS  Google Scholar 

  4. Cheng J, Lu Z, Zhao X, Chen X, Liu Y (2021) Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. J Power Sources 494:229770

    Article  CAS  Google Scholar 

  5. Li H, Chen X, Zalnezhad E, Hui KN, Hui KS, Ko MJ (2020) 3D hierarchical transition-metal sulfides deposited on MXene as binder-free electrode for high-performance supercapacitors. J Ind and Eng Chem 82:309–316

    Article  CAS  Google Scholar 

  6. Zhang L, Hui KN, Hui KS, Or SW (2019) 3D heterostructured cobalt oxide@layered double hydroxide core–shell networks on nickel foam for high-performance hybrid supercapacitor. Dalton Trans 48:150–157

    Article  CAS  Google Scholar 

  7. Wu S, Hui KS, Hui KN (2018) Carbon nanotube@manganese oxide nanosheet core-shell structure encapsulated within reduced graphene oxide film for flexible all-solid-state asymmetric supercapacitors. Carbon 132:776–784

    Article  CAS  Google Scholar 

  8. Zhang P, Liu X, He H, Peng Y, Wu Y (2020) Engineering RuO2 on CuCo2O4/CuO nanoneedles as multifunctional electrodes for the hybrid supercapacitors and water oxidation. J Alloy Compd 832:154962

    Article  CAS  Google Scholar 

  9. Ashourdan M, Semnani A, Hasanpour F, Moosavifard SE (2021) Synthesis of CuMnO2/graphene quantum dot nanocomposites as novel electrode materials for high performance supercapacitors. J Energy Storage 36:102449

    Article  Google Scholar 

  10. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chem Eng J 403:126352

    Article  CAS  Google Scholar 

  11. Liu S, Yin Y, Ni D, Hui KS, Ma M, Park S, Hui KN, Ouyang CY, Jun SC (2019) New insight into the effect of fluorine doping and oxygen vacancies on electrochemical performance of Co2MnO4 for flexible quasi-solid-state asymmetric supercapacitors. Energy Storage Mater 22:384–396

    Article  Google Scholar 

  12. Liu S, Ni D, Li HF, Hui KN, Ouyang CY, Jun SC (2018) Effect of cation substitution on the pseudocapacitive performance of spinel cobaltite MCo2O4 (M = Mn, Ni, Cu, and Co). J Mater Chem A 6:10674–10685

    Article  CAS  Google Scholar 

  13. Li L, Hui KS, Hui KN, Cho YR (2017) Ultrathin petal-like NiAl layered double oxide/sulfide composites as an advanced electrode for high-performance asymmetric supercapacitors. J Mater Chem A 5:19687–19696

    Article  CAS  Google Scholar 

  14. Dai J, Yu B, Ruan Q, Liu Z, Chu PK (2021) Effects of hydrogen etching on MnO2 electrode materials for supercapacitors. Surf Coat Tech 410:126951

    Article  CAS  Google Scholar 

  15. Zhang A, Gao R, Hu L, Zang X, Yang R, Wang S, Yao S, Yang Z, Hao H, Yan Y (2021) Rich bulk oxygen vacancies-engineered MnO2 with enhanced charge transfer kinetics for supercapacitor. Chem Eng J 417:129186

    Article  CAS  Google Scholar 

  16. Zhang Q, Gu D, Li H, Xu Z, Sun H, Li J, Wang L, Shen L (2021) Energy release from RuO2//RuO2 supercapacitors under dynamic discharge conditions. Electrochim Acta 367:137455

    Article  CAS  Google Scholar 

  17. Fugare BY, Lokhande BJ (2017) Study on structural, morphological, electrochemical and corrosion properties of mesoporous RuO2 thin films prepared by ultrasonic spray pyrolysis for supercapacitor electrode application. Mat Sci Semicon Proc 71:121–127

    Article  CAS  Google Scholar 

  18. El-Hout SI, Mohamed SG, Gaber A, Attia SY, Shawky A, El-Sheikh SM (2021) High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications. J Energy Storage 34:102001

    Article  Google Scholar 

  19. Gong Y, Wan J, Zhou P, Wang X, Chen J, Xu K (2021) Oxygen and nitrogen-enriched hierarchical MoS2 nanospheres decorated cornstalk-derived activated carbon for electrocatalytic degradation and supercapacitors. Mat Sci Semicon Proc 123:105533

    Article  CAS  Google Scholar 

  20. Wu H, Guo Z, Li M, Hu G, Tang T, Wen J, Li X, Huang H (2021) Enhanced pseudocapacitive performance of MoS2 by introduction of both N-GQDs and HCNT for flexible supercapacitors. Electrochim Acta 370:137758

    Article  CAS  Google Scholar 

  21. Kesavan D, Mariappan VK, Pazhamalai P, Krishnamoorthy K, Kim S (2021) Topochemically synthesized MoS2 nanosheets: a high performance electrode for wide-temperature tolerant aqueous supercapacitors. J Colloid Interf Sci 584:714–722

    Article  CAS  Google Scholar 

  22. Li T, Wang X, Liu P, Yang B, Diao S, Gao Y (2019) Synthesis of feather fan-like PANI electrodes for supercapacitors. Synthetic Met 258:116194

    Article  CAS  Google Scholar 

  23. Yang L, Shi M, Jiang J, Liu Y, Yan C, Liu H, Guo Z (2019) Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. Mater Lett 244:27–30

    Article  CAS  Google Scholar 

  24. Chen S, Gao P, Zhang D, Lin L, Huang L, Li Z, Lan Z, Jiang Y, Ru Q, Zhou G, Liu J, Kempa K, Gao J (2021) Flexible asymmetric supercapacitors based on NiCo2O4 in a neutral electrolyte achieving 2.4 V voltage window. J Alloy Compd 860:158346

    Article  CAS  Google Scholar 

  25. Zhu Z, Gao F, Zhang Z, Zhuang Q, Liu Q, Yu H, Fu M (2021) In-situ growth of MnCo2O4 hollow spheres on nickel foam as pseudocapacitive electrodes for supercapacitors. J Colloid Interf Sci 587:56–63

    Article  CAS  Google Scholar 

  26. Huang T, Qiu Z, Hu Z, Lu X (2021) Novel method of preparing hierarchical porous CoFe2O4 by the citric acid-assisted sol-gel auto-combustion for supercapacitors. J Energy Storage 35:102286

    Article  Google Scholar 

  27. Kumar YA, Kumar KD, Kim H (2020) Reagents assisted ZnCo2O4 nanomaterial for supercapacitor application. Electrochim Acta 330:135261

    Article  CAS  Google Scholar 

  28. Sun J, Xu C, Chen H (2021) A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors. J Materiomics 7:98–126

    Article  Google Scholar 

  29. Feng Y, Liu W, Wang Y, Gao W, Li J, Liu K, Wang X, Jiang J (2020) Oxygen vacancies enhance supercapacitive performance of CuCo2O4 in high-energy-density asymmetric supercapacitors. J Power Sources 458:228005

    Article  CAS  Google Scholar 

  30. Saleki F, Mohammadi A, Moosavifard SE, Hafizi A, Rahimpour MR (2019) MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. J Colloid Interf Sci 556:83–91

    Article  CAS  Google Scholar 

  31. Vijayakumar S, Lee S, Ryu K (2015) Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim Acta 182:979–986

    Article  CAS  Google Scholar 

  32. Liao L, Zhang H, Li W, Huang X, Xiao Z, Xu K, Yang J, Zou R, Hu J (2017) Facile synthesis of maguey-like CuCo2O4 nanowires with high areal capacitance for supercapacitors. J Alloy Compd 695:3503–3510

    Article  CAS  Google Scholar 

  33. Zhang P, He H (2020) Rational rope-like CuCo2O4 nanosheets directly on Ni foam as multifunctional electrodes for supercapacitor and oxygen evolution reaction. J Alloy Compd 826:153993

    Article  CAS  Google Scholar 

  34. Chen S, Cui S, Chandrasekaran S, Ke C, Li Z, Chen P, Zhang C, Jiang Y (2020) Growth of CuCo2O4@MnMoO4 core/shell nanosheet arrays for high energy density asymmetric supercapacitors. Electrochim Acta 341:135893

    Article  CAS  Google Scholar 

  35. Mohamed SG, Hussain I, Sayed MS, Shim J (2020) One-step development of octahedron-like CuCo2O4@Carbon fibers for high-performance supercapacitors electrodes. J Alloy Compd 842:155639

    Article  CAS  Google Scholar 

  36. Sun J, Du X, Wu R, Mao H, Xu C, Chen H (2021) Simple synthesis of honeysuckle-like CuCo2O4/CuO composites as a battery type electrode material for high-performance hybrid supercapacitors. Int J Hydrogen Energy 46:66–79

    Article  CAS  Google Scholar 

  37. Chen F, Ji Y, Ren F, Tan S, Wang Z (2021) Three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors. J Colloid Interf Sci 586:797–806

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National College Students Innovation and Entrepreneurship Training Program (202011312006) and the Natural Science Foundation of Fujian Province (2019J01800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianfu Huang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Qiu, Z., Hu, Z. et al. Facile synthesis of porous rod-like CuCo2O4 nano-materials for high energy density asymmetric supercapacitors. Ionics 27, 4473–4482 (2021). https://doi.org/10.1007/s11581-021-04191-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04191-x

Keywords

Navigation