Skip to main content

Advertisement

Log in

Study on the themodynamic properties and electrochemical performance of mixture electrolyte for supercapacitor composed of ionic liquid [BMIM][BF4] and SBPBF4/PC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) was blended with spiro-(1,10)-bipyrrolidinium tetrafluoroborate (SBPBF4) salt and propylene carbonate (PC) to obtain a liquid mixture electrolyte system. The thermodynamic properties of the mixture electrolyte with different molar compositions such as viscosity, density, and electrical conductivity were determined at different temperatures. Infrared spectroscopy and density functional theory (DFT) are used to calculate and describe the microscopic interactions in the mixture electrolyte system. Then, the IL-based mixture electrolyte was applied in supercapacitor with active carbon electrodes. The supercapacitor performances of the mixture electrolyte including the electrochemical window, the specific capacitance, and the energy density were tested and reckoned by cyclic voltammetry (CV), electrochemical impedance spectrum (EIS), and galvanostatic charge–discharge (GCD) methods, respectively. The interaction analysis and the electrochemical test results indicate that the appropriate addition of IL is a simple and effective way to improve the electrochemical performance of the electrolyte in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu JH, Xie FF, Wu ZC, Huang T, Wu JF, Yan DD, Huang CQ, Li L (2018) Flexible metallic fabric supercapacitor based on graphene/polyaniline composites. Electrochim Acta 259:968–974

    Article  CAS  Google Scholar 

  2. Su H, Zhang HT, Liu FY, Chun FJ, Zhang BB, Chu X, Huang HC, Deng WL, Gu BN, Zhang HP, Zheng XT, Zhu MB, Yang WQ (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81

    Article  CAS  Google Scholar 

  3. Xia L, Yu LP, Hu D, Chen GZ (2017) Electrolytes for electrochemical energy storage. Mater Chem Front 1:584–618

    Article  CAS  Google Scholar 

  4. Balducci A (2016) Electrolytes for high voltage electrochemical double layer capacitors: a perspective article. J Power Sources 326:534–540

    Article  CAS  Google Scholar 

  5. Wang YG, Song YF, Xia YY (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950

    Article  CAS  Google Scholar 

  6. Yu XW, Wang J, Wang CL, Shi ZQ (2015) A novel electrolyte used in high working voltage application for electrical double-layer capacitor using spiro-(1,1′)-bipyrrolidinium tetrafluoroborate in mixtures solvents. Electrochim Acta 182:1166–1174

    Article  CAS  Google Scholar 

  7. François B, Volker P, Andrea B, Elzbieta F (2014) Supercapacitors: carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2283

    Article  Google Scholar 

  8. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  9. Krummacher J, Schütter C, Hess LH, Balducci A (2018) Non-aqueous electrolytes for electrochemical capacitors. Curr Opin Electrochem 9:64–69

    Article  CAS  Google Scholar 

  10. Chiba K, Ueda T, Yamaguchi Y, Oki Y, Saiki F, Naoi K (2011) Electrolyte systems for high with stand voltage and durability II. alkylated cyclic carbonates for electric double-layer capacitors. J Electrochem Soc 158: A1320.

  11. Zhong C, Deng YD, Hu WB, Qiao JL, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  Google Scholar 

  12. Sieun P, Ketack K (2017) Tetramethylammonium tetrafluoroborate: the smallest quaternary ammonium tetrafluoroborate salt for use in electrochemical double layer capacitors. J Power Sources 338:129–135

    Article  Google Scholar 

  13. Sasi R, Sarojam S, Devaki SJ (2016) High performing biobased ionic liquid crystal electrolytes for supercapacitors. ACS Sustain Chem Eng 4:3535–3543

    Article  CAS  Google Scholar 

  14. Zhang L, Tsay K, Bock C, Zhang JJ (2016) Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20°C–80°C. J Power Sources 324:615–624

    Article  CAS  Google Scholar 

  15. Liu CY, Ma XD, Xu F, Zheng LP, Zhang H, Feng WF, Huang XJ, Armand M, Nie J, Chen HL, Zhou ZB (2014) Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide/N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochim Acta 149:370–385

    Article  CAS  Google Scholar 

  16. Shi ZQ, Yu XW, Wang J, Hu HR, Wu CC (2015) Excellent low temperature performance electrolyte of spiro-(1,1′)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor. Electrochim Acta 174:215–220

    Article  CAS  Google Scholar 

  17. Laheäär A, Jänes A, Lust E (2014) Cesium carborane as an unconventional non-aqueous electrolyte salt for electrochemical capacitors. Electrochim Acta 125:482–487

    Article  Google Scholar 

  18. Huang X, Wang Q, Chen XY, Zhang ZJ (2016) The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors. Phys Chem Chem Phys 18:10438–10452

    Article  CAS  Google Scholar 

  19. Turbomole, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH v6.6 2014; TURBOMOLE GmbH: 2007; available from http://www.turbomole.com. Order date: 10–11–2014 (permanent licence)

  20. Jacquemin J, Feder-Kubis J, Zorębski M, Grzybowska K, Chorążewski M, Hensel-Bielówka S, Zorębski E, Paluch M, Dzida M (2014) Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media COSMO-RS structure characterization and modeling of heat capacities. Phys Chem Chem Phys 16:3549–3557

    Article  CAS  Google Scholar 

  21. Nockemann P, Thijs B, Pittois S, Thoen J, Glorieux C, Hecke KV, Meervelt LV, Kirchner B, Binnemans K (2006) Task specific ionic liquid for solubilizing metal oxides. J Phys Chem B 110:20978–20992

    Article  CAS  Google Scholar 

  22. Zhang QG, Yang H, Lang XS, Zhang XY, Wei Y (2019) 1-Ethyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid mixture as electrolyte for high-voltage supercapacitors. Ionics 25:231–239

    Article  CAS  Google Scholar 

  23. Nikitina VA, Nazet A, Sonnleitner T, Buchner R (2012) Properties of sodium tetrafluoroborate solutions in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Chem Eng Data 57:3019–3025

    Article  CAS  Google Scholar 

  24. Tian SD, Hou YC, Wu WZ, Ren SH, Pang K (2012) Physical properties of 1-butyl-3-methylimidazolium tetrafluoroborate/n-methyl-2-pyrrolidone mixtures and the solubility of CO2 in the system at elevated pressures. J Chem Eng Data 57:756–763

    Article  CAS  Google Scholar 

  25. Cao Q, Lu XX, Wu X, Guo YS, Xu L, Fang WJ (2015) Density, viscosity, and conductivity of binary mixtures of the ıonic liquid n-(2-hydroxyethyl)piperazinium propionate with water, methanol, or ethanol. J Chem Eng Data 60:455–463

    Article  CAS  Google Scholar 

  26. Zhang QG, Liu DY, Li Q, Zhang XY, Wei Y (2018) Density, electrical conductivity, dynamic viscosity, excess properties, and molecular ınteractions of ıonic liquid 1-cyanopropyl-3-methylimidazolium tetrafluoroborate and binary system with acetonitrile. J Chem Eng Data 63:1256–1265

    Article  CAS  Google Scholar 

  27. Zhang QG, Xu TT, Zhang XY, Yang HG, Zhang WB (2018) The thermodynamic and excess properties of trialkyl-substituted ımidazolium-based ıonic liquids with thiocyanate and ıts binary systems with acetonitrile. J Chem Eng Data 63:1408–1418

    Article  CAS  Google Scholar 

  28. Zhang LF, Lu XX, Ye DF, Guo YS, Fang WJ (2016) Density and viscosity for binary mixtures of the ıonic liquid 2,2-diethyl-1,1,3,3-tetramethylguanidinium ethyl sulfate with water, methanol, or ethanol. J Chem Eng Data 61:1023–1031

    Article  CAS  Google Scholar 

  29. Appetecchi GB, Montanino M, Carewska M, Alessandrini F, Passerini S (2010) LiFSI-PYR1AFSI binary electrolyte mixture for lithium batteries. ECS Trans 25:49

    Article  CAS  Google Scholar 

  30. Paillard E, Zhou Q, Henderson WA, Appetecchi GB, Montanino M, Passerini S (2009) Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. J Electrochem Soc 156:A891

    Article  CAS  Google Scholar 

  31. Zhou Y, Gong SD, Xu XZ, Yu ZW, Kiefer J, Wang ZH (2020) The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(flfluorosulfonyl)imide. J Mol Liq 299:112159

    Article  CAS  Google Scholar 

  32. Zhou Y, Xu XZ, Wang ZH, Gong SD, Chen H, Yu ZW, Kiefer J (2020) The effect of introducing an ether group into an imidazolium-based ionic liquid in binary mixtures with DMSO. Phys Chem Chem Phys 22:15734

    Article  CAS  Google Scholar 

  33. Xiong SZ, Scheers J, Aguilera L, Lim DH, Xie K, Jacobsson P, Matic A (2015) Role of organic solvent addition to ionic liquid electrolytes for lithium–sulphur batteries. RSC Adv 5:2122–2128

    Article  CAS  Google Scholar 

  34. Yoon BJ, Jeong SH, Lee KH, Kim HS, Park CG, Han JH (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388:170–174

    Article  CAS  Google Scholar 

  35. Kim JK, Scheers J, Park TJ, Kim Y (2015) Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries. Chemsuschem 8:636–641

    Article  CAS  Google Scholar 

  36. Jalani NH, Ramani M, Ohlsson K, Buelte S, Pacifico G, Pollard R, Staudt R, Datta R (2006) Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells. J Power Sources 160:1096–1103

    Article  CAS  Google Scholar 

  37. Wang B, Jin F, Xie Y, Luo H, Wang F, Ruan TT, Wang DL, Zhou Y, Dou SX (2020) Holey graphene modified LiFePO4 hollow microsphere as an efficient binary sulfur host for high-performance lithium-sulfur batteries. Energy Storage Mater 26:433–442

    Article  Google Scholar 

  38. Lei CH, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C (2013) Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). J Mater Chem A 1:6037–6042

    Article  CAS  Google Scholar 

  39. Wang B, Ruan TT, Chen Y, Jin F, Peng L, Zhou Y, Wang DL, Dou SX (2020) Graphene-based composites for electrochemical energy storage. Energy Storage Mater 24:22–51

    Article  Google Scholar 

  40. Ruan TT, Wang B, Yang YB, Zhang X, Song RS, Ning Y, Wang ZB, Yu HJ, Zhou Y, Wang DL, Dou SX (2020) Interfacial and electronic modulation via localized sulfurization for boosting lithium storage kinetics. Adv Mater 32(17):2000151

    Article  CAS  Google Scholar 

  41. Qu DY (2002) Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 109:403–411

    Article  CAS  Google Scholar 

  42. Suleman M, Kumar Y, Hashmi SA (2015) Flexible electric double-layer capacitors fabricated with micro-/mesoporous carbon electrodes and plastic crystal incorporated gel polymer electrolytes containing room temperature ionic liquids. J Solid State Electr 19:1347–1357

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Project of Science and Technology Department of Liaoning Province of China (No. 2019-ZD-0509), and the Project of Education Department of Liaoning Province of China (No. LQ2019004, LQ2017014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, X., Lang, X. et al. Study on the themodynamic properties and electrochemical performance of mixture electrolyte for supercapacitor composed of ionic liquid [BMIM][BF4] and SBPBF4/PC. Ionics 27, 4003–4011 (2021). https://doi.org/10.1007/s11581-021-04145-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04145-3

Keywords

Navigation