Skip to main content

Advertisement

Log in

MOF-derived Co3O4 nanoparticles embedded in NiO nanosheet arrays as heterostructure cathode for rechargeable lithium-oxygen batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Catalysts with high stability and efficient electrocatalytic properties are urgently explored to improve sluggish kinetics of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in Li-O2 batteries. In this paper, exquisitely designed bifunctional catalyst comprising Co3O4 nanospheres embedded in NiO nanosheet arrays on carbon cloth as a freestanding cathode is reported. The unique hierarchical structure facilitates the continuous oxygen diffusion and the transport of Li+. Moreover, benefitting from the synergetic effect between NiO and Co3O4, the interface charge transfer kinetics was greatly enhanced. As a result, Li-O2 cells based on the integrated NiO/Co3O4/CC electrode present an improved overpotential of 1.1 V, a high discharge capacity of 8000 mAh g−1 at 200 mA g−1 and an enhanced cycle stability of 130 cycles under a restricted capacity at 500 mAh g−1 were reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu G, Zhang L, Wang S et al (2017) Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li–O2 batteries [J]. J Mater Chem A 5:28

    Google Scholar 

  2. Chang Z, Xu J, Zhang X (2017) Recent progress in electrocatalyst for Li-O2 batteries. Adv Energy Mater 7(23):1700875.1

    Article  Google Scholar 

  3. Jung JW, Cho SH, Nam JS et al (2019) Current and future cathode materials for non-aqueous Li-air (O2) battery technology – a focused review [J]. Energy Storage Mater 24:512–528

    Article  Google Scholar 

  4. Capsoni D, Bini M, Ferrari S et al (2012) Recent advances in the development of Li–air batteries [J]. J Power Sources 220(DEC.15):253–263

    Article  CAS  Google Scholar 

  5. Lu M, Yu T, Tzoganakis E et al (2018) Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective[J]. Adv Energy Mater 8(22)

  6. Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B (2012) An improved high-performance lithium–air battery [J]. Nat Chem 4(7):579–585

    Article  CAS  Google Scholar 

  7. Gao X, Chen Y, Johnson L, Bruce PG (2016) Erratum: Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions [J]. Nat Mater 15(8):918–918

    Article  CAS  Google Scholar 

  8. Bruce PG, Freunberger SA, Hardwick LJ et al (2016) Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater 11(02):172–172

  9. Wei X, Mahmood A, Liang Z et al (2016) ChemInform abstract: earth‐abundant nanomaterials for oxygen reduction [J]. Cheminform 47

  10. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries [J]. Nature Commun 2014, 4

  11. Fangyi, Cheng, Jun, et al (2012) ChemInform abstract: metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J]. ChemInform 43(24):no

  12. Kaiming, Liao, Tao et al (2015) Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 Batteries [J]. ChemSusChem 8(8):1429–1434

    Article  Google Scholar 

  13. Wei ZH, Tan P, An L, Zhao TS (2014) A non-carbon cathode electrode for lithium–oxygen batteries [J]. Appl Energy 130(19):134–138

    Article  CAS  Google Scholar 

  14. Yang HK, Chin CC, Chen JS (2016) The use of spray-dried Mn3O4/C composites as electrocatalysts for Li–O2 batteries [J]. Nanomaterials 6(11):203

  15. He M, Zhang P, Xu S, Yan X (2016) Morphology engineering of Co3O4 nanoarrays as free-standing catalysts for lithium-oxygen batteries [J]. ACS Appl Mater Interfaces 8(36):23713–23720

    Article  CAS  Google Scholar 

  16. Zhao W, Li X, Yin R (2019) Urchin-like NiO–NiCo2O4 heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li-O2 batteries [J]. Nanoscale 11(1):50–59

    Article  CAS  Google Scholar 

  17. Wang P, Li C, Dong S, et al (2019) Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long‐life Li‐O2 batteries [J]. Adv Energy Mater 9(24):1900788.1–1900788.14

  18. Hong M, Choi HC, Byon HR (2015) Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li–O2 battery [J]. Chem Mater 27(6):2234–2241

    Article  CAS  Google Scholar 

  19. Tong S, Zheng M, Lu Y, Lin Z, Li J, Zhang X, Shi Y, He P, Zhou H (2015) Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O2 batteries [J]. J Mater Chem A 3:16177–16182

    Article  CAS  Google Scholar 

  20. Yong M, Mac M, Yina X, et al (2018) Tuning polyaniline nanostructures via end group substitutions and their morphology dependent electrochemical performances[J]. Polymer 156

  21. Su TM, Shao Q, Qin ZZ, Guo ZH, Wu ZL (2018) Role Of Interfaces In Two-Dimensional Photocatalyst For Water Splitting. ACS Catal 8:2253–2276

    Article  CAS  Google Scholar 

  22. Huang T, Chen Y, Lee J (2017) A microribbon hybrid structure of CoOx-MoC encapsulated in N-doped carbon nanowire derived from MOF as efficient oxygen evolution electrocatalysts. Small 13:17023

    Google Scholar 

  23. Jiao L, Wang Y, Jiang HL, Xu Q (2018) Metal-organic frameworks as platforms for catalytic applications. Adv Mater 30:1703663

    Article  Google Scholar 

  24. Zhang J, Wang LJ, Xu LL, Ge XM, Zhao X, Lai M, Liu ZL, Chen W (2015) Porous cobalt–manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li–O2 batteries. Nanoscale 7:720–726

    Article  CAS  Google Scholar 

  25. Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF–derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470

    Article  CAS  Google Scholar 

  26. Gong H, Wang T, Xue H et al (2019) Spatially-controlled porous nanoflake arrays derived from MOFs: an efficiently long-life oxygen electrode. Nano Res 12(10):2528–2534

    Article  CAS  Google Scholar 

  27. Song MJ, Kim IT, Kim YB, Kim J, Shin MW (2017) Metal–organic frameworks-derived porous carbon/Co3O4 composites for rechargeable lithium–oxygen batteries [J]. Electrochim Acta 230:73–80

    Article  CAS  Google Scholar 

  28. Lin X, Yang Y, Li Z et al (2019) Metal-organic framework derived Co-N-reduced graphene oxide as electrode materials for rechargeable Li-O2 batteries[J]. New J Chem 43(20):7574–7581

  29. Wu D, Guo Z, Yin X, Pang Q, Tu B, Zhang L, Wang YG, Li Q (2014) Metal–organic frameworks as cathode materials for Li–O2 Batteries [J]. Adv Mater 26(20):3258–3262

    Article  CAS  Google Scholar 

  30. Zheng Y, Zhou T, Zhang C et al (2016) Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries[J]. Angew Chem Int Ed Engl 55(10):3408–3413

  31. Wang J, Zhou Y, Shao Z (2013) Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries[J]. Electrochim Acta 97(5):386–392

    Article  CAS  Google Scholar 

  32. Xzs A, Nan ZA, X Fw B et al (2020) Recent advances of metal-organic frameworks and their composites towards oxygen evolution electrocatalysis[J]. Mater Today Energy 19:100597

  33. Mahala C, Basu M (2017) Nanosheets of NiCo2O4/NiO as efficient and stable electrocatalyst for oxygen evolution reaction[J]. ACS Omega 2(11):7559–7567

  34. Mahala C, Basu M (2017) Nanosheets of NiCo2O4 /NiO as efficient and stable electrocatalyst for oxygen evolution reaction [J]. Acs Omega 2(11):7559–7567

    Article  CAS  Google Scholar 

  35. Jia R, Zhu F, Sun S et al (2017) Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode [J]. J Power Sources 341(FEB.15):427–434

    Article  CAS  Google Scholar 

  36. Wang SF, Sha YJ, Zhu YL, Xu XM, Shao ZP (2015) Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium–oxygen batteries. J Mater Chem A 3:16132–16141

    Article  CAS  Google Scholar 

  37. Wang B, Tang C, Wang HF, Chen X, Cao R, Zhang Q (2019) A nanosized CoNi hydroxide@hydroxysulfide core-shell heterostructure for enhanced oxygen evolution. Adv Mater 31:1805658

    Article  Google Scholar 

  38. Li M, Pan X, Jiang M, Zhang Y, Tang Y, Fu G (2020) Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chem Eng J 395:125160

    Article  CAS  Google Scholar 

  39. Wu S, Qiao Y, Deng H et al (2018) Single ion conducting separator and dual mediators-based electrolyte for high-performance lithium-oxygen battery with non-carbon cathode[J]. J Mater Chem A. https://doi.org/10.1039/C8TA02567C

  40. Sadighi Z, Huang J, Qin L, Yao S, Cui J, Kim J-K (2017) Positive role of oxygen vacancy in electrochemical performance of CoMn2O4 cathodes for Li-O2 batteries. J Power Sources 365:134–147

    Article  CAS  Google Scholar 

  41. Zhang J, Liu F, Cheng JP et al (2015) Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature.[J]. ACS Appl Mater Interfaces 7(32):17630

    Article  CAS  Google Scholar 

  42. Jokar E, Zad AI, Shahrokhian S (2015) Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes [J]. J Solid State Electrochem 19(1):269–274

    Article  CAS  Google Scholar 

  43. Gallant BM, Kwabi DG, Mitchell RR, Zhou J, Thompson CV, Shao-Horn Y (2013) Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries. Energy Environ Sci 6:2518–2528

    Article  CAS  Google Scholar 

  44. Choudhury S, Wan CTC, Al Sadat WI, Tu Z, Lau S, Zachman MJ, Kourkoutis LF, Archer LA (2017) Designer interphases for the lithium-oxygen electrochemical cell. Sci Adv 3:e1602809

    Article  Google Scholar 

  45. Han J, Huang G, Ito Y et al (2017) Full performance nanoporous graphene based Li-O2 batteries through solution phase oxygen reduction and redox-additive mediated Li2O2 oxidation [J]. Adv Energy Mater 7(7):1601933.1–1601933.7

    Article  Google Scholar 

  46. Tian F, Radin MD, Siegel DJ (2014) Enhanced charge transport in amorphous Li2O2. Chem Mater 26:2952–2959

    Article  CAS  Google Scholar 

  47. Sadighi Z, Liu J, Ciucci F, Kim JK (2018) Mesoporous MnCo2S4 nanosheet arrays as an efficient catalyst for Li–O2 batteries [J]. Nanoscale 10:15588–15599

    Article  CAS  Google Scholar 

Download references

Funding

This project is financially supported by Natural Science Foundation of Shandong Province, China (No. ZR2019MB027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Zhou or Yongming Zhu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 13.2 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, M., Zhou, W. et al. MOF-derived Co3O4 nanoparticles embedded in NiO nanosheet arrays as heterostructure cathode for rechargeable lithium-oxygen batteries. Ionics 27, 2915–2925 (2021). https://doi.org/10.1007/s11581-021-04046-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04046-5

Keywords

Navigation