Skip to main content
Log in

Preparation and effects of F-doping on electrochemical properties of Li4Ti5O12 as anode material for Li-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, F-doped Li4Ti5O12 in the form of Li4Ti5O12-xFx (0 ≤ X ≤ 0.4) is successfully synthesized via a solid-state reaction between TiO2 (anatase), Li2CO3, and LiF. The synthesized powder is used as the anode in Li-ion batteries. X-ray diffraction (XRD) results show that the F-doping does not change the spinel-type structure, and it has successfully doped into the crystal structure of Li4Ti5O12. The morphological and electrochemical characterization of synthesized powders is tested with the scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge techniques. Among the modified samples, Li4Ti5O11.7F0.3 delivers the highest capacity and cyclability. The Li4Ti5O11.7F0.3 (LTOF0.3) has a capacity of 139.7 and 134.7 mAh g−1 in the first and 100th cycles with 1 C, respectively. The retention of capacity after 100 cycles charge and discharge with 1 C for LTO and LTOF0.3 is 90.8 and 96.3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yao XL, Xie S, Chen CH, Wang QS, Sum JH, Li YL, Lu SX (2005) Comparisons of graphite and spinel Li1. 33Ti1. 67O4 as anode materials for rechargeable lithium-ion batteries. Electrochim Acta 50(20):4076–4081. https://doi.org/10.1016/j.electacta.2005.01.034

    Article  CAS  Google Scholar 

  2. Yan J, Zhou XY, Zou YL, Tang JJ (2011) A hierarchical porous carbon material for high power, lithium ion batteries. Electrochim Acta 56(24):8576–8581. https://doi.org/10.1016/j.electacta.2011.07.047

    Article  CAS  Google Scholar 

  3. Tan LP, Lu Z, Tan HT, Zhu J, Rui X, Yan Q, Hng HH (2012) Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J Power Sources 206:253–258. https://doi.org/10.1016/j.jpowsour.2011.12.064

    Article  CAS  Google Scholar 

  4. Zhu G-N, Wang Y-G, Xia Y-Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667. https://doi.org/10.1039/C2EE03410G

    Article  CAS  Google Scholar 

  5. Lu X, Zhao L, He X, Xiao R, Gu L, Hu Y-S, Li H, Wang Z, Duan X, Chen L, Maier J, Ikuhara Y (2012) Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv. 24(24):3233–3238. https://doi.org/10.1002/adma.201200450

    Article  CAS  Google Scholar 

  6. Wang Y-Q, Gu L, Guo Y-G, Li H, He X-Q, Tsukimoto S, Ikuhara Y, Wan L-J, Am J (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. Chem Soc 134(18):7874–7879. https://doi.org/10.1021/ja301266w

    Article  CAS  Google Scholar 

  7. Guo J, Zuo W, Cai Y, Chen S, Zhang S, Liu J (2015) A novel Li 4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. J Mater Chem A 3(9):4938–4944. https://doi.org/10.1039/C4ta05660D

    Article  CAS  Google Scholar 

  8. Song H, Jeong TG, Moon YH, Chun HH, Chung KY, Kim HS, Cho BW, Kim YT (2014) Stabilization of oxygen-deficient structure for conducting Li4Ti5O12-δ by molybdenum doping in a reducing atmosphere. Sci Rep 4(1):1–8. https://doi.org/10.1038/srep04350

  9. Xu GB, Yan LW, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J Power Sources 295:305–313. https://doi.org/10.1016/j.jpowsour.2015.06.131

    Article  CAS  Google Scholar 

  10. Wei A, Li W, Zhang L, Ren B, Bai X, Liu Z (2017) Enhanced electrochemical performance of a LTO/N-doped graphene composite as an anode material for Li-ion batteries. Solid State Ionics 311:98–104. https://doi.org/10.1016/j.ssi.2017.09.017

    Article  CAS  Google Scholar 

  11. Bai X, Li W, Wei A, Li X, Zhang L, Liu Z (2016) Preparation and electrochemical properties of Mg2+ and F co-doped Li4Ti5O12 anode material for use in the lithium-ion batteries. Electrochim Acta 222:1045–1055. https://doi.org/10.1016/j.electacta.2016.11.073

    Article  CAS  Google Scholar 

  12. Liu J, Song K, Aken PAV, Maier J, Yu Y (2014) Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14(5):2597–2603. https://doi.org/10.1021/nl5004174

    Article  CAS  PubMed  Google Scholar 

  13. Ji M, Xu Y, Zhao Z, Zhang H, Liu D, Zhao C, Qian X, Zhao C (2014) Preparation and electrochemical performance of La3+ and F co-doped Li4Ti5O12 anode material for lithium-ion batteries. J Power Sources 263:296–303. https://doi.org/10.1016/j.jpowsour.2014.04.051

    Article  CAS  Google Scholar 

  14. Qian D, Gu Y, Chen Y, Liu H, Wang J, Zhou H (2019) Ultra-high specific capacity of Cr3+-doped Li4Ti5O12 at 1.55 V as anode material for lithium-ion batteries. Mater Lett 238:102–106. https://doi.org/10.1016/j.matlet.2018.11.163

    Article  CAS  Google Scholar 

  15. Wei A, Li W, Bai X, Zhang L, Liu Z, Wang Y (2019) A facile one-step solid-state synthesis of a Li4Ti5O12/graphene composite as an anode material for high-power lithium-ion batteries. Solid State Ionics 329:110–118. https://doi.org/10.1016/j.ssi.2018.11.023

    Article  CAS  Google Scholar 

  16. Wang W, Guo Y, Liu L, Wang S, Yang X, Guo H (2014) Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. J Power Sources 245:624–629. https://doi.org/10.1016/j.jpowsour.2013.06.156

    Article  CAS  Google Scholar 

  17. Bai X, Zhang B, Jiang G-Z, Han J-P, Lun N, Qi Y-X, Qiu J, Lu G-X, Qian Z, Bai Y-J (2019) Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate. Electrochim Acta 295:891–899. https://doi.org/10.1016/j.electacta.2018.11.100

    Article  CAS  Google Scholar 

  18. Huang J, Jiang Z (2008) The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim Acta 53(26):7756–7759. https://doi.org/10.1016/j.electacta.2008.05.031

    Article  CAS  Google Scholar 

  19. Nasara RN, Tsai P-C, Lin S-K (2017) One-step synthesis of highly oxygen-deficient lithium titanate oxide with conformal amorphous carbon coating as anode material for lithium ion batteries. Adv Mater 4(15):1700329. https://doi.org/10.1002/admi.201700329

    Article  CAS  Google Scholar 

  20. Chen Y, Qian C, Zhang P, Zhao R, Lu J, Chen M (2018) Fluoride doping Li4Ti5O12 nanosheets as anode materials for enhanced rate performance of lithium-ion batteries. J Electroanal Chem 815:123–129. https://doi.org/10.1016/j.jelechem.2018.02.058

    Article  CAS  Google Scholar 

  21. Noerochim L, Fikry R, Nurdiansah H, Purwaningsih H, Subhan A, Triwibowo J, Prihandoko B (2019) Synthesis of dual-phase Li4Ti5O12−TiO2 nanowires as anode for lithium-ion battery. Ionics 25(4):1505–1511. https://doi.org/10.1007/s11581-018-2659-3

    Article  CAS  Google Scholar 

  22. Wang D, Ding N, Song XH, Chen CH (2009) A simple gel route to synthesize nano-Li 4Ti5O12 as a high-performance anode material for Li-ion batteries. J Matter Sci 44(1):198–203. https://doi.org/10.1007/s10853-008-3104-1

    Article  CAS  Google Scholar 

  23. Xu C, Xue L, Zhang W, Fan X, Yan Y, Li Q, Huang Y, Zhang W (2014) Hydrothermal synthesis of Li4Ti5O12/TiO2 nano-composite as high performance anode material for Li-ion batteries. Electrochim Acta 147:506–512. https://doi.org/10.1016/j.electacta.2014.09.060

    Article  CAS  Google Scholar 

  24. Ge H, Chen L, Yuan W, Zhang Y, Fan Q, Osgood H, Matera D, Song X-M, Wu G (2015) Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J Power Sources 297:436–441. https://doi.org/10.1016/j.jpowsour.2015.08.038

    Article  CAS  Google Scholar 

  25. Lin C, Fan X, Xin Y, Cheng F, Lai MO, Zhou H, Lu L (2014) Monodispersed mesoporous Li4Ti5 O12 submicrospheres as anode materials for lithium-ion batteries: morphology and electrochemical performances. Nanoscale 6(12):6651–6660. https://doi.org/10.1039/C4nr00960F

    Article  CAS  PubMed  Google Scholar 

  26. Nasara RN, Lin S-k (2019) Recent developments in using computational materials design for high-performance Li4Ti5O12 anode material for lithium-ion batteries. Multiscale Model Simul 1(2):87–107. https://doi.org/10.1007/s42493-019-00016-2

    Article  Google Scholar 

  27. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, Thacheray MM (2001) Studies of mg-substituted Li4− xMgxTi5O12 spinel electrodes (0≤ x≤ 1) for lithium batteries. J Electrochem 148(1):A102–A104. https://doi.org/10.1149/1.1344523

    Article  CAS  Google Scholar 

  28. Bai X, Li W, Wei A, Chang Q, Zhang L, Liu Z (2018) Preparation and electrochemical performance of F-doped Li4Ti5O12 for use in the lithium-ion batteries. Solid State Ionics 324:13–19. https://doi.org/10.1016/j.ssi.2018.06.005

    Article  CAS  Google Scholar 

  29. Zhao Z, Xu Y, Ji M, Zhang H (2013) Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650. https://doi.org/10.1016/j.electacta.2013.07.164

    Article  CAS  Google Scholar 

  30. Scharner S, Weppner W, Beurmann PS (1999) Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J Electrochem 146(3):857. https://doi.org/10.1149/1.1391692

    Article  CAS  Google Scholar 

  31. Shen L, Yuan C, Luo H, Zhang X, Xu K, Xia Y (2010) Facile synthesis of hierarchically porous Li 4 Ti 5 O 12 microspheres for high rate lithium ion batteries. J Matter Chem 20(33):6998–7004. https://doi.org/10.1039/C0JM00348D

    Article  CAS  Google Scholar 

  32. Huang S, Wen Z, Gu Z, Zhu X (2005) Preparation and cycling performance of Al3+ and F co-substituted compounds Li4AlxTi5−xFyO12−y. Electrochim Acta 50(20):4057–4062. https://doi.org/10.1016/j.electacta.2004.12.036

    Article  CAS  Google Scholar 

  33. Huang Y, Jiang R, Bao S-J, Dong Z, Cao Y, Jia D, Guo Z (2009) Synthesis and electrochemical properties of nanostructured LiAl xMn 2− xO 4− y Br y particles. J Solid State Electr 13(5):799–805. https://doi.org/10.1007/s10008-008-0757-2

    Article  CAS  Google Scholar 

  34. Tsai P-C, Nasara RN, Shen Y-C, Liang C-C, Chang Y-W, Hsu W-D, Tran NTT, Lin S-K (2019) Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries. Acta Mater 175:196–205. https://doi.org/10.1016/j.actamat.2019.06.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial support of this work from the Research Council of the Iran University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghaffarinejad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahrizi, M., Ghaffarinejad, A. & Daneshtalab, R. Preparation and effects of F-doping on electrochemical properties of Li4Ti5O12 as anode material for Li-ion battery. Ionics 27, 1929–1937 (2021). https://doi.org/10.1007/s11581-021-03965-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03965-7

Keywords

Navigation