Skip to main content

Advertisement

Log in

Research on influencing factors of heat transfer enhancement fins in fuel cell cooling channel

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

PEMFC gradually entered the field of vision of scholars and aroused widespread attention and research, because it has the characteristics of high efficiency, no pollution, and low noise. Traditional PEMFC thermal management system has low efficiency and poor temperature distribution uniformity. This article innovatively proposed a method of using enhanced heat exchange fins for PEMFC thermal management system and established a multi-field coupling simulation model to study the influence of the design parameters of the enhanced heat exchange fins on the temperature of PEMFC, and the optimal fin design scheme is proposed. The results indicated that the fins have an excellent heat transfer enhancement effect, effectively reducing the temperature of each sub-component of PEMFC. Otherwise, different fin angle and fin length have a positive effect on the performance of the thermal management system. Then the design experience of this article can be provided to scholars for reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Wei T, Xiaoming X, Hua D, Yaohua G, Jicheng L, Hongchao W (2020) Sensitivity analysis of the battery thermal management system with a reciprocating cooling strategy combined with a flat heat pipe[J]. ACS Omega 5(14):8258–8267

    Article  CAS  Google Scholar 

  2. Xu XM, Sun XD, Hu DH, Li RZ, Tang W (2018) Research on heat dissipation performance and flow characteristics of air-cooled battery pack[J]. Int J Energy Res 42(11):3658–3671

    Article  Google Scholar 

  3. Ozouf G, Cognard G, Maillard F et al (2018) Sb-doped SnO 2 aerogels based catalysts for proton exchange membrane fuel cells: Pt deposition routes, electrocatalytic activity and durability[J]. Carcinogenesis 25(12):2303

    Google Scholar 

  4. Lamy C (2018) From hydrogen production by water electrolysis to its utilization in a proton exchange membrane fuel cell (PEMFC) or in a solid oxide fuel cell (SOFC): some considerations on the energy efficiencies[J]. Int J Hydrog Energy 41(34):15415–15425

    Article  Google Scholar 

  5. Yablecki J, Hinebaugh J, Bazylak A (2012) Effect of liquid water presence on PEMFC GDL effective thermal conductivity[J]. J Electrochem Soc 159(12):F805–F809

    Article  CAS  Google Scholar 

  6. Zhang G, Kandlikar SG (2012) A critical review of cooling techniques in proton exchange membrane fuel cell stacks[J]. Int J Hydrog Energy 37(3):2412–2429

    Article  CAS  Google Scholar 

  7. Sohn YJ, Park GG, Yang TH, Yoon YG, Lee WY, Yim SD, Kim CS (2005) Operating characteristics of an air-cooling PEMFC for portable applications[J]. J Power Sources 145(2):604–609

    Article  CAS  Google Scholar 

  8. Zhao C, Xing S, Chen M et al (2020) Optimal design of cathode flow channel for air-cooled PEMFC with open cathode[J]. Int J Hydrog Energy 45(35):17771–17781

    Article  CAS  Google Scholar 

  9. Akbari M, Tamayol A, Bahrami M (2012) Thermal assessment of convective heat transfer in air-cooled PEMFC stacks: an experimental study[J]. Energy Procedia. 29(Complete):1–11

  10. Adzakpa KP, Ramousse J, Dubé Y et al (2008) Transient air cooling thermal modeling of a PEM fuel cell[J]. J Power Sources 179(1):164–176

    Article  CAS  Google Scholar 

  11. Ghasemi M, Ramiar A, Ranjbar AA, Rahgoshay SM (2017) A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance[J]. Int J Hydrog Energy 42(38):24319–24337

    Article  CAS  Google Scholar 

  12. Choi EJ, Park JY, Kim MS (2018) A comparison of temperature distribution in PEMFC with single-phase water cooling and two-phase HFE-7100 cooling methods by numerical study[J]. Int J Hydrog Energy 43(29):13406–13419

    Article  CAS  Google Scholar 

  13. Baek SM, Yu SH, Nam JH, Kim CJ (2011) A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs[J]. Appl Therm Eng 31(8–9):1427–1434

    Article  Google Scholar 

  14. Lasbet Y, Auvity B, Castelain C, Peerhossaini H (2007) Thermal and hydrodynamic performances of chaotic mini-channel: application to the fuel cell cooling[J]. Heat Transf Eng 28(8–9):795–803

    Article  CAS  Google Scholar 

  15. Yan C, Chen J, Liu H et al (2019) Model-based fault tolerant control for the thermal management of PEMFC systems[J]. IEEE Trans Ind Electron. PP(99):1

  16. Zhao X, Li Y, Liu Z, Li Q, Chen W (2015) Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. Int J Hydrog Energy 40(7):3048–3056

    Article  CAS  Google Scholar 

  17. Asensio FJ, San Martin JI, Zamora I et al (2018) Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies[J]. Appl Energy 211:413–430

    Article  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (51505196), National Natural Science Foundation of China (51875259), Foundation of State Key Laboratory of Automotive Simulation and Control (20180103), and Science Fund of State Key Laboratory of Automotive Safety and Energy (KF1819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, G., Xu, X., Yuan, Q. et al. Research on influencing factors of heat transfer enhancement fins in fuel cell cooling channel. Ionics 27, 743–757 (2021). https://doi.org/10.1007/s11581-020-03841-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03841-w

Keywords

Navigation