Skip to main content
Log in

Nitrogen–phosphorus co-doped porous carbon using ionic liquids as a dual functional agent for high-performance long-life lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new kind of nitrogen–phosphorus co-doped porous carbon (NPPC) material was prepared by using ionic liquids as a dual functional agent and KCl and ZnCl2 as a salt template. Scanning electron microscopy and transmission electron microscopy images demonstrated that the NPPC material has a uniform porous structure with a high specific surface area of 589.97 m2 g−1. When the NPPC material used as anode materials for lithium-ion batteries, thanks to its good pore structure (contain rich mesoporous and macroporous) and successful doping of nitrogen and phosphorus (9.12 and 0.28 at.%, respectively), its initial discharge capacity is up to 685 mAh g−1 at a current density of 0.1 A g−1. After 50 cycles, reversible capacity of NPPC stays around 715 mAh g-1 and the coulomb efficiency remained above 97%. After 400 cycles at the current density of 2 A g−1, the capacity can still maintain at 394.1 mAh g−1. All results show that the NPPC material has excellent electrochemical properties that can be viewed as a promising candidate for anode materials in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li XM, Wolden CA, Ban CM, Yang YA (2015) Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries. ACS Appl Mater Interfaces 7(51):28444–28451

    CAS  PubMed  Google Scholar 

  2. Liang YR, Chen LY, Cai LF, Liu H, Fu RW, Zhang MQ, Wu DC (2016) Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chem Commun (Camb) 52(4):803–806

    CAS  Google Scholar 

  3. Raccichini R, Varzi A, Wei D, Passerini S (2017) Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv Mater 29(11)

  4. Xu QS, Yang XF, Rao MM, Lin DC, Yan K, Du RA, Xu JT, Zhang YG, Ye DQ, Yang SH, Zhou GM, Lu YY, Qiu YC (2020) High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Mater 26:73–82

    Google Scholar 

  5. Bai J, Xi BJ, Mao HZ, Lin Y, Ma XJ, Feng JK, Xiong SL (2018) One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater 30(35):1802310

    Google Scholar 

  6. Wang HG, Yuan CP, Zhou R, Duan Q, Li YH (2017) Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries. Chem Eng J 316:1004–1010

    CAS  Google Scholar 

  7. Li XN, Zhu XB, Zhu YC, Yuan ZQ, Si LL, Qian YT (2014) Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon 69:515–524

    CAS  Google Scholar 

  8. Joshi BN, An S, Jo HS, Song KY, Park HG, Hwang S, Al-Deyab SS, Yoon WY, Yoon SS (2016) Flexible, freestanding, and binder-free SnO(x)-ZnO/carbon nanofiber composites for lithium ion battery anodes. ACS Appl Mater Interfaces 8(14):9446–9453

    CAS  PubMed  Google Scholar 

  9. Chen MH, Liu JL, Chao DL, Wang J, Yin JH, Lin JY, Jin Fan H, Xiang Shen Z (2014) Porous α-Fe 2 O 3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372

    CAS  Google Scholar 

  10. Zhang KL, Li XN, Liang JW, Zhu YC, Hu L, Cheng QS, Guo C, Lin N, Qian YT (2015) Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim Acta 155:174–182

    CAS  Google Scholar 

  11. Zhang X, Han SC, Xiao PA, Fan CL, Zhang WH (2016) Thermal reduction of graphene oxide mixed with hard carbon and their high performance as lithium ion battery anode. Carbon 100:600–607

    CAS  Google Scholar 

  12. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    CAS  Google Scholar 

  13. Shen XY, Chen S, Mu DB, Wu BR, Wu F (2013) Novel synthesis and electrochemical performance of nano-structured composite with Cu2O embedment in porous carbon as anode material for lithium ion batteries. J Power Sources 238:173–179

    CAS  Google Scholar 

  14. Yan Y, Yin YX, Xin S, Guo YG, Wan LJ (2012) Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem Commun (Camb) 48(86):10663–10665

    CAS  Google Scholar 

  15. Guo DC, Han F, Lu AH (2015) Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Chemistry 21(4):1520–1525

    CAS  PubMed  Google Scholar 

  16. Libbrecht W, Verberckmoes A, Thybaut JW, Van Der Voort P, De Clercq J (2017) Soft templated mesoporous carbons: tuning the porosity for the adsorption of large organic pollutants. Carbon 116:528–546

    CAS  Google Scholar 

  17. Inagaki M, Toyoda M, Soneda Y, Tsujimura S, Morishita T (2016) Templated mesoporous carbons: synthesis and applications. Carbon 107:448–473

    CAS  Google Scholar 

  18. Jia DD, Yu X, Tan H, Li XQ, Han F, Li LL, Liu H (2017) Hierarchical porous carbon with ordered straight micro-channels templated by continuous filament glass fiber arrays for high performance supercapacitors. J Mater Chem A 5(4):1516–1525

    CAS  Google Scholar 

  19. Han BH, Zhou W, Sayari A (2003) Direct preparation of nanoporous carbon by nanocasting. J Am Chem Soc 125(12):3444–3445

    CAS  PubMed  Google Scholar 

  20. Liang CD, Dai S (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J Am Chem Soc 128(16):5316–5317

    CAS  PubMed  Google Scholar 

  21. Zhou K, Hu MX, He Y, Yang L, Han CP, Lv RT, Kang FY, Li BH (2018) Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon 129:667–673

    CAS  Google Scholar 

  22. Hou JH, Cao CB, Idrees F, Ma XL (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3):2556–2564

    CAS  PubMed  Google Scholar 

  23. Jiang JG, Chen H, Wang Z, Bao LK, Qiang YW, Guan SY, Chen JD (2015) Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors. J Colloid Interface Sci 452:54–61

    CAS  PubMed  Google Scholar 

  24. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839

    CAS  Google Scholar 

  25. Wang HB, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794

    CAS  Google Scholar 

  26. Niu HJ, Zhang L, Feng JJ, Zhang QL, Huang H, Wang AJ (2019) Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction. J Colloid Interface Sci 552:744–751

    CAS  PubMed  Google Scholar 

  27. Chen TQ, Pan LK, Loh TA, Chua DH, Yao YF, Chen Q, Li DS, Qin W, Sun Z (2014) Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. Dalton Trans 43(40):14931–14935

    CAS  PubMed  Google Scholar 

  28. Cai DD, Wang CS, Shi CY, Tan N (2018) Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries. J Alloys Compd 731:235–242

    CAS  Google Scholar 

  29. Choi CH, Park SH, Woo SI (2012) Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6(8):7084–7091

    CAS  PubMed  Google Scholar 

  30. Wang CL, Zhou Y, Sun L, Wan P, Zhang X, Qiu JS (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88

    CAS  Google Scholar 

  31. Jiang HL, Zhu YH, Feng Q, Su YH, Yang XL, Li CZ (2014) Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions. Chem Eur J 20(11):3106–3112

    CAS  PubMed  Google Scholar 

  32. Yang DS, Bhattacharjya D, Inamdar S, Park J, Yu JS (2012) Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J Am Chem Soc 134(39):16127–16130

    CAS  PubMed  Google Scholar 

  33. Zhang N, Liu F, Xu SD, Wang FY, Yu Q, Liu L (2017) Nitrogen–phosphorus co-doped hollow carbon microspheres with hierarchical micro–meso–macroporous shells as efficient electrodes for supercapacitors. J Mater Chem A 5(43):22631–22640

    CAS  Google Scholar 

  34. Du MQ, Meng YS, Wang C, Duan CY, Zhu FL, Zhang Y (2019) A simple synthesis of nitrogen-sulfur co-doped porous carbon using ionic liquids as dopant for high rate performance Li-ion batteries. J Electroanal Chem 834:17–25

    CAS  Google Scholar 

  35. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050

    PubMed  Google Scholar 

  36. Wu ZS, Ren W, Xu L, Li F, Cheng HM (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    CAS  PubMed  Google Scholar 

  37. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33(11):1561–1565

    CAS  Google Scholar 

  38. Reichardt S (2017) Wirtz L Raman spectroscopy of graphene. 85-132

  39. Xiao MJ, Meng YS, Duan CY, Zhu FL, Zhang Y (2018) Nitrogen doped porous onion carbon derived from ionic liquids as the anode materials for lithium ion batteries with high performance. J Electroanal Chem 827:167–174

    CAS  Google Scholar 

  40. Ou JK, Yang L, Zhang YZ, Chen L, Guo Y, Xiao D (2015) Fabrication of porous nitrogen-doped carbon materials as anodes for high-performance lithium ion batteries. Chin J Chem 33(11):1293–1302

    CAS  Google Scholar 

  41. Ma XL, Ning GQ, Qi CL, Xu CG, Gao JS (2014) Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6(16):14415–14422

  42. Han FD, Bai YJ, Liu R, Yao B, Qi YX, Lun N, Zhang JX (2011) Template-free synthesis of interconnected hollow carbon nanospheres for high-performance anode material in lithium-ion batteries. Adv Energy Mater 1(5):798–801

    CAS  Google Scholar 

  43. Yang W, Yang W, Ding F, Sang L, Ma ZP, Shao GJ (2017) Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111:419–427

    CAS  Google Scholar 

  44. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9-10):1051–1069

    CAS  Google Scholar 

  45. Zhu YD, Huang Y, Chen C, Wang MY, Liu PB (2019) Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage. Electrochim Acta 321:134698

    CAS  Google Scholar 

  46. Zhao H, Hu ZP, Zhu YP, Ge L, Yuan ZY (2019) P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction. Chin J Catal 40(9):1366–1374

    CAS  Google Scholar 

  47. Sheng LZ, Jiang H, Liu SP, Chen MH, Wei T, Fan ZJ (2018) Nitrogen-doped carbon-coated MnO nanoparticles anchored on interconnected graphene ribbons for high-performance lithium-ion batteries. J Power Sources 397:325–333

    CAS  Google Scholar 

  48. Yan XD, Liu Y, Fan XR, Jia XL, Yu YH, Yang XP (2014) Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors. J Power Sources 248:745–751

    CAS  Google Scholar 

  49. Xu Y, Mo YP, Tian J, Wang P, Yu HG, Yu JG (2016) The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl Catal B Environ 181:810–817

    CAS  Google Scholar 

  50. Wang HB, Zhang CJ, Liu ZH, Wang L, Han PX, Xu HX, Zhang KJ, Dong SM, Yao JH, Cui GL (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430

    CAS  Google Scholar 

  51. Jiang XB, Shi HF, Shen JY, Han WQ, Sun XY, Li JS, Wang LJ (2018) Synergistic effect of pyrrolic N and graphitic N for the enhanced nitrophenol reduction of nitrogen-doped graphene-modified cathode in the bioelectrochemical system. J Electroanal Chem 823:32–39

    CAS  Google Scholar 

  52. Patel MA, Luo F, Khoshi MR, Rabie E, Zhang Q, Flach CR, Mendelsohn R, Garfunkel E, Szostak M, He H (2016) P-doped porous carbon as metal free catalysts for selective aerobic oxidation with an unexpected mechanism. ACS Nano 10(2):2305–2315

    CAS  PubMed  Google Scholar 

  53. Yang W, Yang W, Kong LN, Song AL, Qin XJ, Shao GJ (2018) Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: a balanced strategy for pore structure and chemical composition. Carbon 127:557–567

    CAS  Google Scholar 

  54. Zhu YY, Chen MM, Li Q, Yuan C, Wang CY (2018) A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129:695–701

    CAS  Google Scholar 

  55. Yang SB, Huo JP, Song HH, Chen XH (2008) A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim Acta 53(5):2238–2244

    CAS  Google Scholar 

  56. Mao Y, Duan H, Xu B, Zhang L, Hu YS, Zhao CC, Wang ZX, Chen LQ, Yang YS (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5(7):7950

    CAS  Google Scholar 

  57. Zheng FC, Yang Y, Chen QW (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261

    CAS  PubMed  Google Scholar 

  58. Liu YY, Gu JJ, Zhang JL, Yu F, Dong LT, Nie N, Li W (2016) Metal organic frameworks derived porous lithium iron phosphate with continuous nitrogen-doped carbon networks for lithium ion batteries. J Power Sources 304:42–50

    CAS  Google Scholar 

  59. Li YZ, Meng YS, Liu XL, Xiao MJ, Hu QR, Li RN, Ke XY, Ren GF, Zhu FL (2019) Double-protected zinc ferrite nanospheres as high rate and stable anode materials for lithium ion batteries. J Power Sources 442:227256

    CAS  Google Scholar 

Download references

Funding

The authors received financial support from the National Natural Science Foundation of China (NFSC) (grant nos. 52064035, 51404124). This work was supported by the fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology (SKLAB02019015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-liang Zhu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Yx., Meng, Ys., Du, Yy. et al. Nitrogen–phosphorus co-doped porous carbon using ionic liquids as a dual functional agent for high-performance long-life lithium ion batteries. Ionics 27, 97–105 (2021). https://doi.org/10.1007/s11581-020-03785-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03785-1

Keywords

Navigation