Skip to main content

Advertisement

Log in

Sucrose-assisted rapid synthesis of multifunctional CrVO4 nanoparticles: a new high-performance cathode material for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The search of new multifunctional cathode materials, with new crystal structures and compositions, for lithium ion battery is extremely important to mitigate the drawbacks associated with the current electrode materials used in rechargeable lithium ion batteries. In this paper, orthovanadate family CrVO4 has been identified and investigated as a new cathode material for high-rate and high-capacity lithium ion battery for the first time. A solution-based effective and versatile synthetic protocol has been proposed to synthesize CrVO4 nanoparticles. Physical characterizations reveal that the prepared CrVO4 consists of uniform and discreet nanoparticles of crystallite size ~ 19 nm with widespread pore diameter, enhanced conductivity and surface area. The prepared CrVO4 nanoparticles have been evaluated as a potential cathode material for lithium ion batteries, wherein the experimental results demonstrate enhanced lithium storage with high rate-capability and cyclability. The experimental results reveal that the proposed CrVO4 is working through a partial conversion reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Z, Luan D, Madhavi S, Hu Y, Lou XW (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5:5252–5256

    CAS  Google Scholar 

  2. Chen R, Knapp M, Yavuz M, Heinzmann R, Wang D, Ren S, Trouillet V, Lebedkin S, Doyle S, Hahn H, Ehrenberg H, Indris S (2014) Reversible Li+ storage in a LiMnTiO4 spinel and its structural transition mechanisms. J Phys Chem C 118:12608–12616

    CAS  Google Scholar 

  3. Pan A, Zhang JG, Nie Z, Cao G, Arey BW, Li G, Liang SQ, Liu J (2010) Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J Mater Chem 20:9193–9199

    CAS  Google Scholar 

  4. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    CAS  Google Scholar 

  5. Fang G, Liang C, Zhou J, Cai G, Liang S, Liu J (2016) Effect of crystalline structure on the electrochemical properties of K0.25V2O5 nanobelt for fast Li insertion. Electrochim Acta 218:199–207

    CAS  Google Scholar 

  6. Baddour-Hadjean R, Pereira-Ramos JP, Navone C, Smirnov M (2008) Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films. Chem Mater 20:1916–1923

    CAS  Google Scholar 

  7. Uchaker E, Zhou N, Li Y, Cao G (2013) Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J Phys Chem C 117:1621–1626

    CAS  Google Scholar 

  8. Whittingham MS (1976) The role of ternary phases in cathode reactions. J Electrochem Soc 123:315–320

    CAS  Google Scholar 

  9. Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269

    CAS  Google Scholar 

  10. Takehira K, Shishido T, Song Z, Matsushita T, Kawabata T, Takaki K (2004) CrystallineCrV0.95P0.05O4 catalyst for the vapor-phase oxidation of picolines. Catal Today 91:7–11

    Google Scholar 

  11. Bera G, Mishra A, Mal P, Sankarakumar A, Sen P, Gangan A, Chakraborty B, Reddy VR, Das P, Turpu GR (2018) Multifunctionality of partially reduced graphene oxide–CrVO4 nanocomposite: electrochemical and photocatalytic studies with theoretical insight from density functional theory. J Phys Chem C 122:21140–21150

    CAS  Google Scholar 

  12. Wisesa P, Li C, Wang C, Mueller T (2019) Materials with the CrVO4 structure type as candidate super protonic conductors. RSC Adv 9:31999–32009

    CAS  Google Scholar 

  13. Koechner W (1988) Properties of solid state laser materials. Solid-State Laser Eng 1:28–78

    Google Scholar 

  14. Kumar P, Sharma HK, Shalaan KG (2012) Development of chromium(III) selective potentiometric sensor by using synthesized triazole derivative as an ionophore. 2013:1–6

  15. Charig A, Blake-Haskins J, Eigen E (1985) Anomalous liquid scintillation counting of chromium-51. Anal Biochem 151:428–443

    CAS  PubMed  Google Scholar 

  16. Lopez-Moreno S, Rodríguez-Hernández P, Munoz A, Errandonea D (2017) First-principles study of InVO4 under pressure: phase transitions from CrVO4 to AgMnO4-type structure. Inorg Chem 56:2697–2711

    CAS  PubMed  Google Scholar 

  17. Orel B, Surca Vuk A, Opara Krasovec U, Drazic G (2001) Electrochromic and structural investigation of InVO4 and some other vanadia-based oxide films. Electrochim Acta 46:2059–2068

    CAS  Google Scholar 

  18. Touboul M, Melghit K (1995) Synthesis by Chimie douce and properties of chromium (III) vanadates (V). J Mater Chem 5:147–150

    CAS  Google Scholar 

  19. Lakkepally S, Kalegowda Y, Ganganagappa N, Siddaramanna A (2018) A new and effective approach for Fe2V4O13 nanoparticles synthesis: evaluation of electrochemical performance as cathode for lithium secondary batteries. J Alloys Compd 737:665–671

    CAS  Google Scholar 

  20. Zhao B, Yu X, Cai R, Ran R, Wang H, Shao Z (2012) Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (III) raw material. J Mater Chem 22:2900–2907

    CAS  Google Scholar 

  21. Shishido T (2011) Preparation of crystalline CrVO4 catalyst by soft chemistry technique and application for vapor-phase oxidation of picolines. J Jpn Petrol Inst 54:225–236

    CAS  Google Scholar 

  22. Lv W, Wei B, Xu L, Zhao Y, Gao H, Liu J (2012) Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method. Appl Surf Sci 259:557–561

    CAS  Google Scholar 

  23. Liu Q, Zhou B, Xu M, Mao G (2017) Integration of nanosized ZIF-8 particles onto mesoporous TiO2 nanobeads for enhanced photocatalytic activity. RSC Adv 7:8004–8010

    CAS  Google Scholar 

  24. Ma H, Zhang S, Ji W, Tao Z, Chen J (2008) α-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. J Am Chem Soc 130:5361–5367

    CAS  PubMed  Google Scholar 

  25. Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21:9841–9848

    CAS  Google Scholar 

  26. Feng Y, Li Y, Hou F (2009) Preparation and electrochemical properties of Cr doped LiV3O8 cathode for lithium ion batteries. Mater Lett 63:1338–1340

    CAS  Google Scholar 

  27. Yang Y, Li J, Chen D, Zhao J (2017) Spray drying-assisted synthesis of Li3VO4/C/CNTs composites for high-performance lithium ion battery anodes. J Electrochem Soc 164:A6001–A6006

    CAS  Google Scholar 

  28. Zhang S, Peng S, Hu R, Ramakrishna S (2015) Copper vanadates/polyaniline composites as anode materials for lithium-ion batteries. RSC Adv 5:20692–20698

    CAS  Google Scholar 

  29. Cui P, Liang Y, Zhan D, Zhao Y (2014) Synthesis and characterization of NiV3O8 powder as cathode material for lithium-ion batteries. Electrochim Acta 148:261–265

    CAS  Google Scholar 

  30. Ye D, Ozawa K, Wang B, Hulicova-Jurcakova D, Zou J, Sun C, Wang L (2014) Capacity-controllable Li-rich cathode materials for lithium-ion batteries. Nano Energy 6:92–102

    CAS  Google Scholar 

  31. Jung SK, Hwang I, Cho SP, Oh K, Ku K, Choi IR, Kang K (2018) New iron-based intercalation host for lithium-ion batteries. Chem Mater 30:1956–1964

    CAS  Google Scholar 

  32. Ye D, Wang B, Chen Y, Han G, Zhang Z, Hulicova-Jurcakova D, Zou J, Wang L (2014) Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J Mater Chem A 2:18767–18774

    CAS  Google Scholar 

  33. Sun X, Si W, Liu X, Deng J, Xi L, Liu L, Yan C, Schmidt OG (2014) Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 9:168–175

    CAS  Google Scholar 

  34. Kolli SK, Van der Ven A (2018) First-principles study of spinel MgTiS2 as a cathode material. Chem Mater 30:2436–2442

    CAS  Google Scholar 

  35. Vellaisamy M, Nallathamby K (2015) Li2Ni0.5Mn0.5SnO4/C: a novel hybrid composite electrode for high rate applications. Inorg Chem 54:8590–8597

    CAS  PubMed  Google Scholar 

  36. Sun Y, Xie Z, Li Y (2018) Enhanced lithium storage performance of V2O5 with oxygen vacancy. RSC Adv 8:39371–39376

    CAS  Google Scholar 

  37. Orsini F, Baudrin E, Denis S, Dupont L, Touboul M, Guyomard D, Piffard Y, Tarascon JM (1998) ‘Chimie douce’ synthesis and electrochemical properties of amorphous and crystallized LiNiVO4 vs. Li. Solid State Ion 107:123–133

    CAS  Google Scholar 

  38. Cao X, Xie J, Zhan H, Zhou Y (2006) Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel. Mater Chem Phys 98:71–75

    CAS  Google Scholar 

  39. Kuang Q, Zhao Y, Dong Y, Fan Q (2015) Sol-gel synthesized zirconium pyrovanadate as a high-capacity cathode for rechargeable Li batteries. Electrochim Acta 170:229–233

    CAS  Google Scholar 

  40. Yang G, Song H, Yang G, Wu M, Wang C (2015) 3D hierarchical AlV3O9 microspheres: first synthesis, excellent lithium ion cathode properties and investigation of electrochemical mechanism. Nano Energy 15:281–292

    CAS  Google Scholar 

  41. Liu Y, Xu M, Shen B, Xia Z, Li Y, Wu Y, Li Q (2018) Facile synthesis of mesoporous NH4V4O10 nanoflowers with high performance as cathode material for lithium battery. J Mater Sci 53:2045–2053

    CAS  Google Scholar 

  42. Li X, Li P, Luo M, Chen X, Chen J (2010) Controllable solvo-hydrothermal electrodeposition of lithium vanadate uniform carnation-like nanostructure and their electrochemical performance. J Solid State Electrochem 14:1325–1332

    CAS  Google Scholar 

  43. Meng J, Liu Z, Niu C, Xu X, Liu X, Zhang G, Wang X, Huang M, Yu Y, Mai L (2016) A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. J Mater Chem A 4:4893–4899

    CAS  Google Scholar 

  44. Hao P, Zhu T, Su Q, Lin J, Cui R, Cao X, Wang Y, Pan A (2018) Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries. Front Chem 6:195

    PubMed  PubMed Central  Google Scholar 

  45. Baudrin E, Laruelle S, Denis S, Touboul M, Tarascon JM (1999) Synthesis and electrochemical properties of cobalt vanadates vs. lithium. Solid State Ionics 123:139–153

    CAS  Google Scholar 

  46. Li Z, Li J, Kang F (2019) 3D hierarchical AlV3O9 microspheres as a cathode material for rechargeable aluminum-ion batteries. Electrochim Acta 298:288–296

    CAS  Google Scholar 

  47. Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2011) The study of lithium ion de-insertion/insertion in LiMn2O4 and determination of kinetic parameters in aqueous Li2SO4 solution using electrochemical impedance spectroscopy. Electrochim Acta 56:1439–1446

    CAS  Google Scholar 

  48. Shivashankaraiah RB, Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV Electrochemical characterization of polypyrrole–LiNi1/3Mn1/3Co1/3O2 composite cathode material for aqueous rechargeable lithium batteries. J Solid State Electrochem 16:1279–1290

  49. Chen Z, Cao L, Chen L, Zhou H, Xie K, Kuang Y (2015) Nanoplate-stacked baguette-like LiVO3 as a high performance cathode material for lithium-ion batteries. J Mater Chem A 3:8750–8755

    CAS  Google Scholar 

  50. Huang Z, Cao L, Chen L, Kuang Y, Zhou H, Fu C, Chen Z (2016) Preparation, characterization, and lithium intercalation behavior of LiVO3 cathode material for lithium-ion batteries. J Phys Chem C 120:3242–3249

    CAS  Google Scholar 

  51. Ramar V, Balaya P (2013) Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping. Phys Chem Chem Phys 15:17240–17249

    CAS  PubMed  Google Scholar 

  52. Xiao B, Zhang W, Xia H, Wang Z, Tang L, An C, He Z, Tong H, Zheng J (2019) V 2(PO 4) O/C@ CNT hollow spheres with a core–shell structure as a high performance anode material for lithium-ion batteries. Mater Chem Front 3:456–463

    CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to the DSU management for extending constant encouragement.

Funding

The author, Ashoka S acknowledges the Science and Engineering Research Board (ECR/2017/000743), Government of India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoka S.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreenivasa L, Yogeeshwari R.T, Viswanatha R et al. Sucrose-assisted rapid synthesis of multifunctional CrVO4 nanoparticles: a new high-performance cathode material for lithium ion batteries. Ionics 27, 39–48 (2021). https://doi.org/10.1007/s11581-020-03783-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03783-3

Keywords

Navigation