Skip to main content

Advertisement

Log in

Asymmetric supercapacitors with high energy density and high specific capacitance based on Ni-Co-Mn multiphase metal structure MOF

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Design and construction of multiphase nanostructures of metal organic frameworks (MOF) has recently been considered an effective method for the preparation of synergistic and excellent performance supercapacitor materials. Herein, Ni-Co-Mn-based metal organic frameworks (Ni-Co-Mn MOF) are prepared through an effortless one-step hydrothermal method, in which multiple metal nodes were evenly distributed between MOF nanostructure through ligands and formed a multiphase nanostructure through synergy. The synthesized Ni-Co-Mn0.25 MOF exhibits a prominent specific capacitance of 1575 F g−1 at 1 A g−1, remarkable rate capability and cycling stability. Moreover, we constructed an asymmetrical supercapacitor, which performed an excellent energy density of 73.56 Wh kg−1 at a power density of 399 W kg−1 and great cycling stability with 81.64% of original capacitance after 5000 cycles. Ni-Co-Mn MOF is a promising hybrid electrode material for excellent performance supercapacitor as well as it provides a simple and economic way to fabricate supercapacitor composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Satpathy S, Das S, Bhattacharyya BK (2020) How and where to use super-capacitors effectively, an integration of review of past and new characterization works on super-capacitors. Journal of Energy Storage 27:101044

    Article  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  3. Jiang Y, Chen L, Zhang H, Zhang Q, Chen W, Zhu J, Song D (2016) Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem Eng J 292:1–12

    Article  CAS  Google Scholar 

  4. Wang R, Xu C, Lee J-M (2016) High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19:210–221

    Article  CAS  Google Scholar 

  5. Mondal C, Ghosh D, Ganguly M, Sasmal AK, Roy A, Pal T (2015) Synthesis of multiwall carbon nanotube wrapped Co(OH)2 flakes: a high-performance supercapacitor. Appl Surf Sci 359:500–507

    Article  CAS  Google Scholar 

  6. Wang R, Jayakumar A, Xu C, Lee J-M (2016) Ni(OH)2 Nanoflowers/graphene hydrogels: a new assembly for supercapacitors. ACS Sustain Chem Eng 4:3736–3742

    Article  CAS  Google Scholar 

  7. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  PubMed  Google Scholar 

  8. Mukherjee S, Desai AV, Ghosh SK (2018) Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coord Chem Rev 367:82–126

    Article  CAS  Google Scholar 

  9. Li Y, Xu Y, Yang W, Shen W, Xue H, Pang H (2018) MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14:1704435

    Article  CAS  Google Scholar 

  10. Sundriyal S, Kaur H, Bhardwaj SK, Mishra S, Kim K-H, Deep A (2018) Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord Chem Rev 369:15–38

    Article  CAS  Google Scholar 

  11. Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128

    Article  CAS  Google Scholar 

  12. Lee DY, Yoon SJ, Shrestha NK, Lee S-H, Ahn H, Han S-H (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Microporous Mesoporous Mater 153:163–165

    Article  CAS  Google Scholar 

  13. Li W-H, Deng W-H, Wang G-E, Xu G (2020) Conductive MOFs. EnergyChem 2:100029

    Article  Google Scholar 

  14. Li S, Duan Y, Teng Y, Fan N, Huo Y (2019) MOF-derived tremelliform Co3O4/NiO/Mn2O3 with excellent capacitive performance. Appl Surf Sci 478:247–254

    Article  CAS  Google Scholar 

  15. Dai S, Bai Y, Shen W, Zhang S, Hu H, Fu J, Wang X, Hu C, Liu M (2021) Core-shell structured Fe2O3@Fe3C@C nanochains and Ni–Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor. J Power Sources 482:228915

    Article  CAS  Google Scholar 

  16. Wang X, Li Q, Yang N, Yang Y, He F, Chu J, Gong M, Wu B, Zhang R, Xiong S (2019) Hydrothermal synthesis of NiCo-based bimetal-organic frameworks as electrode materials for supercapacitors. J Solid State Chem 270:370–378

    Article  CAS  Google Scholar 

  17. Wang J, Zhong Q, Xiong Y, Cheng D, Zeng Y, Bu Y (2019) Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Appl Surf Sci 483:1158–1165

    Article  CAS  Google Scholar 

  18. Yan Y, Lin J, Cao J, Guo S, Zheng X, Feng J, Qi J (2019) Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies. J Mater Chem A 7:24486–24492

    Article  CAS  Google Scholar 

  19. Guo XL, Zhang JM, Xu WN, Hu CG, Sun L, Zhang YX (2017) Growth of NiMn LDH nanosheet arrays on KCu7S4 microwires for hybrid supercapacitors with enhanced electrochemical performance. J Mater Chem A 5:20579–20587

    Article  CAS  Google Scholar 

  20. Zhang Z, Huo H, Wang L, Lou S, Yin G (2021) Stacking fault disorder induced by mn doping in Ni(OH)2 for supercapacitor electrodes. Chem Eng J 12:128617

    Article  CAS  Google Scholar 

  21. Han Y, Zhou J, Wang L, Xing L, Xue Z, Jiao Y, Pang Y (2021) Redox-active nanostructure electrode of Mn/Ni bimetal organic frameworks anchoring on multi-walled carbon nanotubes for advanced supercapacitor. J Electroanal Chem 882:114993

    Article  CAS  Google Scholar 

  22. Deka BK, Hazarika A, Lee S, Kim DY, Park Y-B, Park HW (2020) Triboelectric-nanogenerator-integrated structural supercapacitor based on highly active P-doped branched Cu–Mn selenide nanowires for efficient energy harvesting and storage. Nano Energy 73:104754

    Article  CAS  Google Scholar 

  23. Li B, Shi Y, Huang K, Zhao M, Qiu J, Xue H, Pang H (2018) Cobalt-doped nickel phosphite for high performance of electrochemical energy storage. Small 14:1703811

    Article  CAS  Google Scholar 

  24. Chen J, Ohba M, Zhao D, Kaneko W, Kitagawa S (2006) Polynuclear core-based nickel 1,4-cyclohexanedicarboxylate coordination polymers as temperature-dependent hydrothermal reaction products. Cryst Growth Des 6:664–668

    Article  CAS  Google Scholar 

  25. Hu X, Hu H, Li C, Li T, Lou X, Chen Q, Hu B (2016) Cobalt-based metal organic framework with superior lithium anodic performance. J Solid State Chem 242:71–76

    Article  CAS  Google Scholar 

  26. Zhang Z, Huo H, Yu Z, Xiang L, Xie B, Du C, Wang J, Yin G (2021) Unraveling the reaction mechanism of low dose Mn dopant in Ni(OH)2 supercapacitor electrode. J Energy Chem 61:497–506

  27. Lee D-J, Li Q, Kim H, Lee K (2012) Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous Mesoporous Mater 163:169–177

    Article  CAS  Google Scholar 

  28. Xu H, Zeng M, Li J, Tong X (2015) Facile hydrothermal synthesis of flower-like Co-doped NiO hierarchical nanosheets as anode materials for lithium-ion batteries. RSC Adv 5:91493–91499

    Article  CAS  Google Scholar 

  29. Yan Y, Bao K, Liu T, Cao J, Feng J, Qi J (2020) Minutes periodic wet chemistry engineering to turn bulk Co-Ni foam into hydroxide based nanosheets for efficient water decomposition. Chem Eng J 401:126092

    Article  CAS  Google Scholar 

  30. Kim JG, Lee SH, Kim Y, Kim WB (2013) Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties. ACS Appl Mater Interfaces 5:11321–11328

    Article  CAS  PubMed  Google Scholar 

  31. Lv Z, Zhong Q, Bu Y (2018) In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Appl Surf Sci 439:413–419

    Article  CAS  Google Scholar 

  32. Chen Q, Lei S, Deng P, Ou X, Chen L, Wang W, Xiao Y, Cheng B (2017) Direct growth of nickel terephthalate on Ni foam with large mass-loading for high-performance supercapacitors. J Mater Chem A 5:19323–19332

    Article  CAS  Google Scholar 

  33. Phonsuksawang P, Khajondetchairit P, Ngamchuea K, Butburee T, Sattayaporn S, Chanlek N, Suthirakun S, Siritanon T (2021) Enhancing performance of NiCo2S4/Ni3S2 supercapacitor electrode by Mn doping. Electrochim Acta 368:137634

    Article  CAS  Google Scholar 

  34. Deng T, Lu Y, Zhang W, Sui M, Shi X, Wang D, Zheng W (2018) Inverted design for high-performance supercapacitor via Co(OH)2-derived highly oriented MOF electrodes. Adv Energy Mater 8:1702294

    Article  CAS  Google Scholar 

  35. Zarshad N, Wu J, Rahman AU, Ni H (2020) Fe-MnO2 core-shell heterostructure for high-performance aqueous asymmetrical supercapacitor. J Electroanal Chem 871:114266

    Article  CAS  Google Scholar 

  36. Li Q, Lu C, Chen C, Xie L, Liu Y, Li Y, Kong Q, Wang H (2017) Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Materials 8:59–67

    Article  Google Scholar 

  37. Kazemi SH, Hosseinzadeh B, Kazemi H, Kiani MA, Hajati S (2018) Facile synthesis of mixed metal–organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl Mater Interfaces 10:23063–23073

    Article  CAS  PubMed  Google Scholar 

  38. Mohamed SG, Hussain I, Shim J-J (2018) One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10:6620–6628

    Article  CAS  PubMed  Google Scholar 

  39. Shen W, Zang J, Hu H, Xu J, Zhang Z, Yan R, Dai S (2020) Controlled synthesis of KCu7S4/rGO nanocomposites for electrochemical energy storage. Mater Des 195:108992

    Article  CAS  Google Scholar 

  40. Li Q, Wang X, Yang N, He F, Yang Y, Wu B, Chu J, Zhou A, Xiong S (2019) Hydrangea-like NiCo-based bimetal-organic frameworks, and their pros and cons as supercapacitor electrode materials in aqueous electrolytes. Z Anorg Allg Chem 645:1022–1030

    Article  CAS  Google Scholar 

  41. Hong M, Zhou C, Xu S, Ye X, Yang Z, Zhang L, Zhou Z, Hu N, Zhang Y (2019) Bi-metal organic framework nanosheets assembled on nickel wire films for volumetric-energy-dense supercapacitors. J Power Sources 423:80–89

    Article  CAS  Google Scholar 

  42. Cao F, Gan M, Ma L, Li X, Yan F, Ye M, Zhai Y, Zhou Y (2017) Hierarchical sheet-like Ni–Co layered double hydroxide derived from a MOF template for high-performance supercapacitors. Synth Met 234:154–160

    Article  CAS  Google Scholar 

  43. Liu X, Ye L, Du Y, Zhao L (2019) Metal organic framework derived coreshell hollow CoSx@NiCo-LDH as advanced electrode for highperformance supercapacitor. Mater Lett 258:126812

    Article  CAS  Google Scholar 

  44. Xuan X, Qian M, Han L, Wan L, Li Y, Lu T, Pan L, Niu Y, Gong S (2019) In-situ growth of hollow NiCo layered double hydroxide on carbon substrate for flexible supercapacitor. Electrochim Acta 321:134710

    Article  CAS  Google Scholar 

  45. Chen S, Zhao L, Wei W, Li Y, Mi L (2020) A novel strategy to synthesize NiCo layered double hydroxide nanotube from metal organic framework composite for high-performance supercapacitor. J Alloys Compd 831:154794

    Article  CAS  Google Scholar 

  46. Lee G, Na W, Kim J, Lee S, Jang J (2019) Improved electrochemical performances of MOF-derived Ni–Co layered double hydroxide complexes using distinctive hollow-in-hollow structures. J Mater Chem A 7(29):17637–17647

    Article  CAS  Google Scholar 

  47. Hong J, Park S-J, Kim S (2019) Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim Acta 311:62–71

    Article  CAS  Google Scholar 

  48. Rahmanifar MS, Hesari H, Noori A, Masoomi MY, Morsali A, Mousavi MF (2018) A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material. Electrochim Acta 275:76–86

    Article  CAS  Google Scholar 

  49. Xu S, Liu R, Shi X, Ma Y, Hong M, Chen X, Wang T, Li F, Hu N, Yang Z (2020) A dual CoNi MOF nanosheet/nanotube assembled on carbon cloth for high performance hybrid supercapacitors. Electrochim Acta 342:136124

    Article  CAS  Google Scholar 

  50. Zhou Q, Gong Y, Tao K (2019) Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor. Electrochim Acta 320:134582

    Article  CAS  Google Scholar 

  51. Sun G, Ma L, Ran J, Shen X, Tong H (2016) Incorporation of homogeneous Co3O4 into a nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performance asymmetric supercapacitors. J Mater Chem A 4:9542–9554

    Article  CAS  Google Scholar 

  52. Zhang X, Wang J, Ji X, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2020) Nickel/cobalt bimetallic metal-organic frameworks ultrathin nanosheets with enhanced performance for supercapacitors. J Alloys Compd 825:154069

    Article  CAS  Google Scholar 

  53. Dai S, Zhang Z, Xu J, Shen W, Zhang Q, Yang X, Xu T, Dang D, Hu H, Zhao B, Wang Y, Qu C, Fu J, Li X, Hu C, Liu M (2019) In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy 64:103919

    Article  CAS  Google Scholar 

  54. Tian T, Gao H, Zhou X, Zheng L, Wu J, Li K, Ding Y (2018) Study of the active sites in porous nickel oxide nanosheets by manganese modulation for enhanced oxygen evolution catalysis. ACS Energy Letters 3:2150–2158

    Article  CAS  Google Scholar 

  55. Lu Y, Liang J, Deng S, He Q, Deng S, Hu Y, Wang D (2019) Hypercrosslinked polymers enabled micropore-dominant N, S Co-Doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 65:103993

    Article  CAS  Google Scholar 

  56. Qorbani M, T-c C, Lee Y-H, Samireddi S, Naseri N, Ganguly A, Esfandiar A, Wang C-H, Chen L-C, Chen K-H, Moshfegh AZ (2017) Multi-porous Co3O4 nanoflakes @ sponge-like few-layer partially reduced graphene oxide hybrids: towards highly stable asymmetric supercapacitors. J Mater Chem A 5:12569–12577

    Article  CAS  Google Scholar 

  57. Liu Y, Wang Y, Wang H, Zhao P, Hou H, Guo L (2019) Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Appl Surf Sci 492:455–463

    Article  CAS  Google Scholar 

  58. Liu Y, Wang Y, Chen Y, Wang C, Guo L (2020) NiCo-MOF nanosheets wrapping polypyrrole nanotubes for high-performance supercapacitors. Appl Surf Sci 507:145089

    Article  CAS  Google Scholar 

  59. Liu Y, Wang Y, Shi C, Chen Y, Li D, He Z, Wang C, Guo L, Ma J (2020) Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor. Carbon 165:129–138

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51772248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Song, S., Li, W. et al. Asymmetric supercapacitors with high energy density and high specific capacitance based on Ni-Co-Mn multiphase metal structure MOF. Ionics 27, 3553–3566 (2021). https://doi.org/10.1007/s11581-021-04056-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04056-3

Keywords

Navigation