Skip to main content
Log in

Graphene oxide-wrapped sulfur/acetylene black for high-performance lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

GO@S/C composite with a multilayered sandwich structure was prepared by a moderate sol-gel method, which was based on porous acetylene black (C) loading sulfur and insertion into multilayered graphene oxide (GO). When evaluated as a cathode for lithium-sulfur batteries (LSBs), it shows an improved capacity of 1433 mAh/g at 0.1 C and 433 mAh/g at 5 C with almost 100% coulombic efficiency for comparison with pure sulfur electrode. It also effectively hinders the expansion of sulfur, the dissolution of polysulfides, and the shuttle effect due to the adsorption and local confinement of polysulfide by porous C and GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Braga MH, Grundish NS, Murchisona AJ, Goodenough JB (2017) Alternative strategy for a safe rechargeable battery. Energy Environ Sci 10:331–336

    Article  CAS  Google Scholar 

  2. Yang YJ, Liu XZ, Dai ZH, Yuan FL, Bando Y, Golberg D, Wang X (2017) In situ electrochemistry of rechargeable battery materials: status report and perspectives. Adv Mater 29(1-22):1606922

    Article  Google Scholar 

  3. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6(1-8):5682

    Article  Google Scholar 

  4. Seh ZW, Sun YM, Zhang QF, Cui Y (2016) Designing high-energy lithium–sulfur batteries. Chem Soc Rev 45:5605–5634

    Article  CAS  Google Scholar 

  5. Song JX, Yu ZX, Gordin ML, Wang DH (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen doped graphene sheets for high-energy-density lithium−sulfur batteries. Nano Lett 16:864–870

    Article  CAS  Google Scholar 

  6. Zhang H, Zuo PJ, Hua JF, Ma YL, Du CY, Cheng XQ, Gao YZ, Yin GP (2017) Improved rate performance of lithium sulfur batteries by in-situ anchoring of lithium iodide in carbon/sulfur cathode. Electrochim Acta 238:257–262

    Article  CAS  Google Scholar 

  7. Liang S, Liang C, Xia Y, Xu HH, Huang H, Tao XY, Gan YP, Zhang WK (2016) Facile synthesis of porous Li2S@C composites as cathode materials for lithium–sulfur batteries. J Power Sources 306:200–207

    Article  CAS  Google Scholar 

  8. Fan FY, Carter WC, Chiang YM (2015) Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater 27:5203–5209

    Article  CAS  Google Scholar 

  9. Su YS, Fu YZ, Cochell T, Manthiram A (2013) A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat Commun 4(1-8):2985

    Article  Google Scholar 

  10. Liang S, Xia Y, Liang C, Gan YP, Huang H, Zhang J, Tao XY, Sun W, Han WQ, Zhang WK (2018) A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC-CNT cathodes with high Li2S content for advanced Li-S batteries. J Mater Chem A 6(21):9906–9914

    Article  CAS  Google Scholar 

  11. Pang Q, Liang X, Kwok CY, Kulisch J, Nazar LF (2017) A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv Energy Mater 7(1-9):1601630

    Article  Google Scholar 

  12. He B, Li WC, Yang C, Wang SQ, Lu AH (2016) Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: an electrolysis approach. ACS Nano 10:1633–1639

    Article  CAS  Google Scholar 

  13. Rehman S, Gu X, Khan K, Mahmood N, Yang W, Huang X, Guo S, Hou Y (2016) 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium-sulfur batteries. Adv Energy Mater 6(1-8):1502518

    Article  Google Scholar 

  14. Fan Y, Yang Z, Hua W, Liu D, Tao T, Rahman MM, Lei W, Huang S, Chen Y (2016) Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv Funct Mater 26:1112–1119

    Article  Google Scholar 

  15. Wu HB, Wei SY, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem-Eur J 19:10804–10808

    Article  CAS  Google Scholar 

  16. Du JL, Yang ZX, Wang XR, Qi CY, Li Y, Mao W, Qiao HY, Yu ZB, Ren TQ, Qiao QD (2017) Fabrication of multilayered-sandwich MoS2/C architectures with advanced lithium storage properties. Electrochim Acta 250:238–243

    Article  CAS  Google Scholar 

  17. Zhuang X, Liu Y, Chen J, Chen H (2014) Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode. J Energy Chem 23(3):391–396

    Article  CAS  Google Scholar 

  18. Mao YY, Li GR, Guo Y, Li ZP, Liang CD, Peng XS, Lin Z (2017) Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat Commun 8(1-8):14628

    Article  Google Scholar 

  19. Huang JQ, Zhuang TZ, Zhang Q, Peng HJ, Chen CM, Wei F (2015) Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium sulfur batteries. ACS Nano 9(3):3002–3011

    Article  CAS  Google Scholar 

  20. Zheng SY, Wen Y, Zhu YJ, Han Z (2014) In situ sulfur reduction and intercalation of graphite oxides for Li-S battery cathodes. Adv Energy Mater 4(16):1400482

    Article  Google Scholar 

  21. Huang JQ, Xu ZL, Abouali S, Garakani MA, Kim JK (2016) Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99:624–632

    Article  CAS  Google Scholar 

  22. Zhang LY, Wang YY, Peng B, Yu WT, Wang HY, Wang T, Deng BW, Chai LY, Zhang K, Wang JX (2014) Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li-S batteries. Green Chem 16(8):3926–3934

    Article  CAS  Google Scholar 

  23. Park SK, Lee J, Hwang T, Piao YZ (2017) Sulfur-loaded monodisperse carbon nanocapsules anchored on graphene nanosheets as cathodes for high performance lithium-sulfur batteries. J Mater Chem A 5:975–981

    Article  CAS  Google Scholar 

  24. Xiao ZB, Yang Z, Zhang LJ, Pan H, Wang RH (2017) Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium-sulfur batteries. ACS Nano 11:8488–8498

    Article  CAS  Google Scholar 

  25. Sun ZH, Zhang JQ, Yin LC, Hu GJ, Fang RP, Cheng HM, Li F (2017) Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. 8(1-8):16427

  26. Ma ZL, Tao L, Liu DD, Li Z, Zhang YQ, Liu ZJ, Liu HW, Chen R, Huo J, Wang SY (2017) Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries. J Mater Chem A 5:9412–9417

    Article  CAS  Google Scholar 

  27. Su DW, Cortie M, Wang GX (2017) Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries. Adv Energy Mater 7(1-12):1602014

    Article  Google Scholar 

  28. Luo SW, Yao MJ, Lei S, Yan PZ, Wei X, Wang XT, Liu LL, Niu ZQ (2017) Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries. Nanoscale 9:4646–4651

    Article  CAS  Google Scholar 

  29. Noerochim L, Wang JZ, Chou SL, Wexler D, Liu HK (2012) Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 50:1289–1297

    Article  CAS  Google Scholar 

  30. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  CAS  Google Scholar 

  31. Shahriary LL, Athawale A (2014) Graphene oxide synthesized by using modified Hummers approach. Int J Renew Energy Environ Eng 2(1):58–63

    Google Scholar 

  32. Yu XG, Xie JY, Yang J, Huang HJ, Wang K, Wen ZS (2004) Lithium storage in conductive sulfur-containing polymers. J Electroanal Chem 573:121–128

    CAS  Google Scholar 

  33. Chen MF, Jiang SX, Cai SY, Wang XY, Xiang KX, Ma ZY, Song P, Fisher AC (2017) Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium-sulfur batteries. Chem Eng J 313:404–414

    Article  CAS  Google Scholar 

  34. Li FF, Lu W, Niu SZ, Li BH (2014) Preparation and electrochemical performance of a graphene-wrapped carbon/sulfur composite cathode. New Carbon Mater 29(4):309–315

    Article  Google Scholar 

Download references

Funding

This work was supported by the Nature Science Foundation of China (No. 11702234), the Nature Science Foundation of Hunan Province (No. 2018JJ3488), and the Opening Project of Engineering Research Center of Nano-Geo Materials of Ministry of Education of China University of Geosciences (NGM2020KF009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youlan Zou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Long, B., Li, Z. et al. Graphene oxide-wrapped sulfur/acetylene black for high-performance lithium-sulfur batteries. Ionics 26, 4929–4935 (2020). https://doi.org/10.1007/s11581-020-03645-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03645-y

Keywords

Navigation