Skip to main content

Advertisement

Log in

The composite of 3D carbon nanotube architecture and NiCo double hydroxide for high-performance supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A three-dimensional porous architecture of multiwalled carbon nanotubes (MWCNT), denoted as 3D-MWCNT, was fabricated on Ni foam (NiF) via a simple hydrothermal method. The 3D-MWCNT, constructed with interlaced carbon nanotubes, is a highly porous network structure and is subsequently used as the electrical conductive platform for the fabrication of positive electrode of faradaic supercapacitor. The obtained positive electrode was denoted as NiCo-DH/3D-MWCNT/NiF, which was produced via the electrodeposition of NiCo double hydroxide (NiCo-DH) on 3D-MWCNT/NiF. The 3D-MWCNT platform not only endows NiCo-DH/3D-MWCNT/NiF large surface area but also enhanced electrical conductivity. NiCo-DH/3D-MWCNT/NiF displays an ultrahigh areal capacity of 6.142 C cm−2 at 60 mA cm−2 and 96.31% capacity retention after 2000 cycles at 60 mA cm−2. An asymmetrical supercapacitor (ASC) is also assembled with NiCo-DH/3D-MWCNT/NiF as the positive electrode and activated carbon (AC) as the negative electrode. The ASC exhibits a prominent specific energy of 30.99 Wh kg−1 at a high specific power of 427.46 W kg−1. It is especially worth noting that the ASC exhibited remarkable capacity retention of 84.7% even after 2000 galvanostatic charge–discharge cycles at a high current density of 30 mA cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baptista JM, Sagu JS, Wijayantha KGU, Lobato K (2019) State-of-the-art materials for high power and high energy supercapacitors: performance metrics and obstacles for the transition from lab to industrial scale-a critical approach. Chem Eng J 374:1153–1179

  2. Yang ZF, Tian JR, Yin ZF, Cui CJ, Qian WZ, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480

  3. Dubey R, Guruviah V (2019) Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25:1419–1445

    Article  CAS  Google Scholar 

  4. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sust Energ Rev 101:123–145

    Article  CAS  Google Scholar 

  5. Wu X, Huang B, Wang Q, Wang Y (2020) High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: understanding the role of interlayer ions and hydration. Chem Eng J 380:122456

    Article  CAS  Google Scholar 

  6. Yang Y, Tu Y, Zhu P, Zhang L, Li T, Zheng H, Sun R, Wong C (2018) A cobalt hydroxide-based compressible electrode material for asymmetrical all-solid supercapacitors. Sustai Energ Fuels 2:2345–2357

    Article  CAS  Google Scholar 

  7. Zhang A, Zheng W, Yuan Z, Tian J, Yue L, Zheng R, Wei D, Liu J (2020) Hierarchical NiMn-layered double hydroxides@CuO core-shell heterostructure in-situ generated on Cu(OH)2 nanorod arrays for high performance supercapacitors. Chem Eng J 380:122486

    Article  CAS  Google Scholar 

  8. Yin Q, Li D, Zhang J, Zhao Y, Luo J, Shao M, Han J (2020) An all-solid-state fiber-type supercapacitor based on hierarchical Ni/NiO@CoNi-layered double hydroxide core-shell nanoarrays. J Alloys Compds 813:152187

    Article  CAS  Google Scholar 

  9. Du Y, Li G, Chen M, Yang X, Ye L, Liu X, Zhao L (2019) Hollow nickel-cobalt-manganese hydroxide polyhedra via MOF templates for high-performance quasi-solid-state supercapacitor. Chem Eng J 378:122210

    Article  CAS  Google Scholar 

  10. Li X, Zhao Y, Yu J, Liu Q, Chen R, Zhang H, Song D, Li R, Liu J, Wang J (2019) Layer-by-layer inkjet printing GO film and Ag nanoparticles supported nickel cobalt layered double hydroxide as a flexible and binder-free electrode for supercapacitors. J Colloid Interface Sci 557:691–699

    Article  CAS  Google Scholar 

  11. Huang C, Hu Y, Jiang S, Chen HC (2019) Amorphous nickel-based hydroxides with different cation substitutions for advanced hybrid supercapacitors. Electrochim Acta 325:134936

    Article  CAS  Google Scholar 

  12. Jing C, Huang Y, Xia L, Chen Y, Wang X, Liu X, Dong B, Dong F, Li S, Zhang Y (2019) Growth of cobalt-aluminum layered double hydroxide nanosheets on graphene oxide towards high performance supercapacitors: the important role of layer structure. Appl Surf Sci 496:143700

    Article  CAS  Google Scholar 

  13. Zhang TF, Lee W-J, Kwon S-H, Wan Z (2019) Facile syntheses and electrochemical properties of Ni(OH)2 nanosheets/porous Ni foam for supercapacitor application. Mater Lett 256:126656

    Article  CAS  Google Scholar 

  14. Wang X, Yan H, Zhang J, Hong X, Yang S, Wang C, Li Z (2019) Stamen-petal-like CeO2/NiMn layered double hydroxides composite for high-rate-performance supercapacitor. J Alloys Compds 810:151911

    Article  CAS  Google Scholar 

  15. Wang S, Wang Z, Wang Y, Chen J, Chen Z, Chen Y, Fu J (2019) Environmentally friendly room temperature synthesis of hierarchical porous α-Ni(OH)2 nanosheets for supercapacitor and catalysis applications. Green Chem 21:5960–5968

    Article  CAS  Google Scholar 

  16. Chen H, Zhang H, Zhang Y, Wang Y, Su X, Zhang L, Lin Z (2019) General strategy toward hexagonal ring-like layered double hydroxides and their application for asymmetric supercapacitors. Chem Eng J 375:121926

    Article  CAS  Google Scholar 

  17. Jia H, Wang Z, Zheng X, Lin J, Liang H, Cai Y, Qi J, Cao J, Feng J, Fei W (2018) Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem Eng J 351:348–355

    Article  CAS  Google Scholar 

  18. Li H, Musharavati F, Zalenezhad E, Chen X, Hui KN, Hui KS (2018) Electrodeposited Ni-Co layered double hydroxides on titanium carbide as a binder-free electrode for supercapacitors. Electrochim Acta 261:178–187

    Article  CAS  Google Scholar 

  19. Wang X, Song T (2016) Bucky paper templating Ni–Co hydroxide nanosheets as free-standing electrodes for ultrathin and flexible supercapacitors. New J Chem 40:8006–8011

    Article  CAS  Google Scholar 

  20. Zhu F, Yan M, Liu Y, Shen H, Lei Y, Shi W (2017) Hexagonal prism-like hierarchical Co9S8@Ni(OH)2 core–shell nanotubes on carbon fibers for high performance asymmetric supercapacitors. J Mater Chem A 5:22782–22789

    Article  CAS  Google Scholar 

  21. Luo G, Teh KS, Xia Y, Li Z, Luo Y, Zhao L, Jiang Z (2018) Construction of NiCo2O4@NiFe LDHs core/shell nanowires array on carbon cloth for flexible, high-performance pseudocapacitor electrodes. J Alloys Compds 767:1126–1132

    Article  CAS  Google Scholar 

  22. Cao J, Li L, Xi Y, Li J, Pan X, Chen D, Han W (2018) Core–shell structural PANI-derived carbon@Co–Ni LDH electrode for high-performance asymmetric supercapacitors. Sustain Energ Fuels 2:1350–1355

    Article  CAS  Google Scholar 

  23. Yu D, Zheng X, Chen M, Dong X (2019) Large-scale synthesis of Ni(OH)2/peach gum derived carbon nanosheet composites with high energy and power density for battery-type supercapacitor. J Colloid Interf Sci 557:608–616

    Article  CAS  Google Scholar 

  24. Ma Y, Yuan W, Bai Y, Wu H, Cheng L (2019) The toughening design of pseudocapacitive materials via graphene quantum dots: towards enhanced cycling stability for supercapacitors. Carbon 154:292–300

    Article  CAS  Google Scholar 

  25. Liu L, Guan T, Fang L, Wu F, Lu Y, Luo H, Song X, Zhou M, Hu B, Wei D, Shi H (2018) Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor. J Alloys Compds 763:926–934

    Article  CAS  Google Scholar 

  26. Huang Y, Buffa A, Deng H, Sarkar S, Ouyang Y, Jiao X, Hao Q, Mandler D (2019) Ultrafine Ni(OH)2 nanoplatelets grown on 3D graphene hydrogel fabricated by electrochemical exfoliation for high-performance battery-type asymmetric supercapacitor applications. J. Power Sources 439:227046

    Article  CAS  Google Scholar 

  27. Li X, Chen R, Zhao Y, Liu Q, Liu J, Yu J, Lie J, Liu P, Li J, Wang J (2019) Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors. Chem Eng J 375:121988

    Article  CAS  Google Scholar 

  28. Li M, Jijie R, Barras A, Roussel P, Szunerits S, Boukherroub R (2019) NiFe layered double hydroxide electrodeposited on Ni foam coated with reduced graphene oxide for high-performance supercapacitors. Electrochim Acta 302:1–9

    Article  Google Scholar 

  29. Xie J, Sun X, Zhang N, Xu K, Zhou M, Xie Y (2013) Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2:65–74

    Article  CAS  Google Scholar 

  30. Yang YJ, Li W (2019) Hierarchical Ni-Co double hydroxide nanosheets on reduced graphene oxide self-assembled on Ni foam for high-energy hybrid supercapacitors. J Alloys Compds 776:543–553

    Article  CAS  Google Scholar 

  31. Aghazadeh M, Karimzadeh I, Ahmadi A, Ganjali MR, Norouzi P (2018) Cobalt hydroxide hexagonal nanoplates anchored on functionalized carbon nanotubes (CNTs) for supercapacitor applications: one-pot electrochemical fabrication of high performance nanocomposite. J Mater Sci 29:14378–14386

    CAS  Google Scholar 

  32. Han C, Cao W, Si H, Wu Y, Liu K, Liu H, Sang S, Wu Q (2019) One-step electrodeposition synthesis of high performance carbon nanotubes/graphene-doped Ni(OH)2 thin film electrode for high performance supercapacitor. Electrochim Acta 322:134747

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jun Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 585 kb)

ESM 2

(DOCX 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.J., Li, W. The composite of 3D carbon nanotube architecture and NiCo double hydroxide for high-performance supercapacitor. Ionics 26, 4685–4694 (2020). https://doi.org/10.1007/s11581-020-03623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03623-4

Keywords

Navigation