Skip to main content
Log in

Mechanistic insight into the role of N-doped carbon matrix in electrospun binder-free Si@C composite anode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To improve the long cyclic stability and rate capability of Si-based anode, we demonstrate a core-shell structural Si@NC composite decorates with N-doped carbon network using a low-cost, a simple process of electrospinning and low-temperature pyrolysis. Si@PVP/Urea fabric composite spun on the copper foil was directly carbonized and then was cut into wafers used as the electrode plates without extra conductive agent and binder. The enhanced rate capability and cyclic stability of special structural Si@NC is mainly ascribable to N-doped carbon matrix providing numerous active sites, which attract Li to those points in an efficient way, and the core-shell structures supply high mechanical strength for Si@NC composite. Importantly, almost 3-fold improvement in the capacity retention rate of the Si@NC has been observed at high current densities of 1.6 and 3.2 A g−1. Meanwhile, DFT calculations confirm that Li will be easily adsorbed by N-active sites in N-doped carbon model to strengthen chemical absorption ability, which could have more chance to grab the quickly moving Li in a brief period. It is significant for theoretical guidance of subsequent studies. The findings should make an important contribution providing a great possibility for the mass production and application to the field of lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu C, Usiskin RE, Yu Y, Maier J (2017) Science 358

  2. Chen Y, Liu L, Xiong J, Yang T, Qin Y, Yan C (2015) Adv Funct Mater 25:6701–6709

    CAS  Google Scholar 

  3. Pinus I, Catti M, Ruffo R, Salamone MM, Mari CM (2014) Chem Mater 26:2203–2209

    CAS  Google Scholar 

  4. Shen C, Ge M, Zhang A, Fang X, Liu Y, Rong J, Zhou C (2016) Nano Energy 19:68–77

    CAS  Google Scholar 

  5. Jia R, Yue J, Xia Q, Xu J, Zhu X, Sun S, Zhai T, Xia H (2018) Energy Storage Mater 13:303–311

    Google Scholar 

  6. Yuan Y, Xiao W, Wang Z, Fray DJ, Jin X (2018) Angew Chem 57:15743–15748

    CAS  Google Scholar 

  7. Cho JH, Picraux ST (2013) Nano Lett 13:5740–5747

    CAS  PubMed  Google Scholar 

  8. Liu SWJ, Qie Y, Yu J, Sun Q (2018) Carbon 140:680–687

    CAS  Google Scholar 

  9. Liu J, Zhang Q, Zhang T, Li J-T, Huang L, Sun S-G (2015) Adv Funct Mater 25:3599–3605

    CAS  Google Scholar 

  10. David L, Bhandavat R, Barrera U, Singh G (2016) Nat Commun 7:10998

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen H, Wang S, Liu X, Hou X, Chen F, Pan H, Qin H, Lam K-h, Xia Y, Zhou G (2018) Electrochim Acta 288:134–143

    CAS  Google Scholar 

  12. Tao Xu DW, Qiu P, Zhang J, Wang Q, Xia B, Xie X (2018) Nanoscale

  13. Wang W, Gu L, Qian H, Zhao M, Ding X, Peng X, Sha J, Wang Y (2016) J Power Sources 307:410–415

    CAS  Google Scholar 

  14. Hedong Chen KS, Hou X, Zhang G, Wang S, Chen F, Fu L, Qin H, Xia Y, Zhou G (2019) Appl Surf Sci 470:496–506

    Google Scholar 

  15. Huang S, Cheong LZ, Wang D, Shen C (2017) Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 9:23672–23678

    CAS  PubMed  Google Scholar 

  16. Chen H, Wang Z, Hou X, Fu L, Wang S, Hu X, Qin H, Wu Y, Ru Q, Liu X, Hu S (2017) Electrochim Acta 249:113–121

    CAS  Google Scholar 

  17. Chen H, Hou X, Chen F, Wang S, Wu B, Ru Q, Qin H, Xia Y (2018) Carbon 130:433–440

    CAS  Google Scholar 

  18. Chen Y, Hu Y, Shao J, Shen Z, Chen R, Zhang X, He X, Song Y, Xing X (2015) J Power Sources 298:130–137

    CAS  Google Scholar 

  19. Yoo JK, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24:5452–5456

    CAS  PubMed  Google Scholar 

  20. Zhang C, Yu R, Zhou T, Chen Z, Liu H, Guo Z (2014) Carbon 72:169–175

    CAS  Google Scholar 

  21. Xue L, Fu K, Li Y, Xu G, Lu Y, Zhang S, Toprakci O, Zhang X (2013) Nano Energy 2:361–367

    CAS  Google Scholar 

  22. Chen H, Hou X, Qu L, Qin H, Ru Q, Huang Y, Hu S, Lam K-h (2016) J Mater Sci Mater Electron 28:250–258

    Google Scholar 

  23. Kresse G, Furthmiiller J (1996) Comput Mater Sci

  24. Kresse G, Furthmuller J (1996) Phys Rev B 54

  25. Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

    CAS  Google Scholar 

  26. Kresse G, Joubert D (1991) Phys Rev B

  27. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54

  28. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Google Scholar 

  29. Taylor J, Guo H, Wang J (2001) Phys Rev B 63

  30. Xu X, Zhao R, Ai W, Chen B, Du H, Wu L, Zhang H, Huang W, Yu T (2018) Adv Mater 30:e1800658

    PubMed  Google Scholar 

  31. Li C, Wu M, Liu R (2019) Appl Catal B Environ 244:150–158

    CAS  Google Scholar 

  32. Zhu X, Jin T, Tian C, Lu C, Liu X, Zeng M, Zhuang X, Yang S, He L, Liu H, Dai S (2017) Adv Mater 29

  33. Attia EN, Hassan FM, Li M, Batmaz R, Elkamel A, Chen Z (2017) J Mater Chem A 5:24159–24167

    CAS  Google Scholar 

  34. Xu Z-L, Zhang B, Kim J-K (2014) Nano Energy 6:27–35

    Google Scholar 

  35. Sun C, Deng Y, Wan L, Qin X, Chen G (2014) ACS Appl Mater Interfaces 6:11277–11285

    CAS  PubMed  Google Scholar 

  36. Zhou X, Wan LJ, Guo YG (2013) Small 9:2684–2688

    CAS  PubMed  Google Scholar 

  37. Han Y, Zou J, Li Z, Wang W, Jie Y, Ma J, Tang B, Zhang Q, Cao X, Xu S, Wang ZL (2018) Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries. ACS Nano 12:4835–4843

    CAS  PubMed  Google Scholar 

  38. Chen J, Mao Z, Zhang L, Wang D, Xu R, Bie L, Fahlman BD (2017) Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11:12650–12657

    CAS  PubMed  Google Scholar 

  39. Kim JS, Pfleging W, Kohler R, Seifert HJ, Kim TY, Byun D, Jung H-G, Choi W, Lee JK (2015) J Power Sources 279:13–20

    CAS  Google Scholar 

  40. Luo W, Wang Y, Chou S, Xu Y, Li W, Kong B, Dou SX, Liu HK, Yang J (2016) Nano Energy 27:255–264

    CAS  Google Scholar 

  41. Wang Y, Zhao X, Tian Y, Wang Y, Jan AK, Chen Y (2017) Facile electrospinning synthesis of carbonized polyvinylpyrrolidone (PVP)/g-C<sub>3</sub> N<sub>4</sub> hybrid films for photoelectrochemical applications. Chemistry 23:419–426

    CAS  PubMed  Google Scholar 

  42. Yang X, Wen Z, Xu X, Lin B, Huang S (2007) J Power Sources 164:880–884

    CAS  Google Scholar 

  43. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Nano Lett 11:2949–2954

    CAS  PubMed  Google Scholar 

  44. Esmanski A, Ozin GA (2009) Adv Funct Mater 19:1999–2010

    CAS  Google Scholar 

  45. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Nat Commun 4:1943

    PubMed  Google Scholar 

  46. Shang H, Zuo Z, Yu L, Wang F, He F, Li Y (2018) Adv Mater 30:e1801459

    PubMed  Google Scholar 

  47. Zhou X, Cao A-M, Wan L-J, Guo Y-G (2012) Nano Res 5:845–853

    CAS  Google Scholar 

  48. Liu XH, Liu Y, Kushima A, Zhang S, Zhu T, Li J, Huang JY (2012) Adv Energy Mater 2:722–741

    CAS  Google Scholar 

  49. Kim N, Park H, Yoon N, Lee JK (2018) ACS Nano

  50. Jiazhi Hu YW, Li D, Cheng Y-T (2018) J Power Sources 397:223–230

    Google Scholar 

  51. Sun Z, Wang G, Cai T, Ying H, Han W-Q (2016) Electrochim Acta 191:299–306

    CAS  Google Scholar 

  52. Rahman MA, Song G, Bhatt AI, Wong YC, Wen C (2016) Adv Funct Mater 26:647–678

    CAS  Google Scholar 

  53. Li C, Liu C, Wang W, Bell J, Mutlu Z, Ahmed K, Ye R, Ozkan M, Ozkan CS (2016) Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning. Chem Commun 52:11398–11401

    CAS  Google Scholar 

Download references

Funding

This work was supported financially by the union project of National Natural Science Foundation of China and Guangdong Province (U1601214), the Scientific and Technological Plan of Guangdong Province (2018B050502010, 018A050506078, 2017B090901027), the Natural Science Foundation of Guangdong Province (2017A030310166), the Project of Blue Fire Plan (Nos CXZJHZ201708 and CXZJHZ201709), and Science and Technology Project Foundation of Zhongshan City of Guangdong Province of China (No. 2018B1127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianhua Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kaixiang Shen and Hedong Chen both contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Chen, H., Hou, X. et al. Mechanistic insight into the role of N-doped carbon matrix in electrospun binder-free Si@C composite anode for lithium-ion batteries. Ionics 26, 3297–3305 (2020). https://doi.org/10.1007/s11581-020-03484-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03484-x

Keywords

Navigation