Skip to main content
Log in

Fabrication of gas diffusion electrode via Pt electrodeposition on cathodic oxidized carbon paper as the anode for high-temperature polymer membrane fuel cell in the presence of CO

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The platinum nanoparticles were grown directly by electrodeposition process on electrochemically oxidized carbon paper (CP) and non-oxidized CP as the anode gas diffusion electrodes (GDEs) for the application in ABPBI-based high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). XRD, SEM, and CO stripping in the range of 40 to 120 °C were used to investigate the prepared GDEs. Results show that cathodic oxidation of CP has an effect on the CO tolerance of the anode GDE. This enhancement appears to originate from the functional oxygen groups on oxidized CP. Fuel cell results, operating with pure hydrogen at 140 °C, show 230 mW/cm2 and 160 mW/cm2 maximum power densities for cathodic oxidized and non-oxidized GDEs, respectively. It was also found that poisoning by 3% CO for cathodic oxidized electrode at 140 °C display an enhancement in the performance compared with non-oxidized electrode, so cathodic oxidized GDE could be an interesting anode for HT-PEMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zamora H et al (2015) Improving of micro porous layer based on advanced carbon materials for high temperature proton exchange membrane fuel cell electrodes. Fuel Cells 15(2):375–383

    Article  CAS  Google Scholar 

  2. Myles TD et al (2015) Application of a coated film catalyst layer model to a high temperature polymer electrolyte membrane fuel cell with low catalyst loading produced by reactive spray deposition technology. Catalysts 5(4):1673–1691

    Article  CAS  Google Scholar 

  3. Devrim Y, Arıca ED, Albostan A (2018) Graphene based catalyst supports for high temperature PEM fuel cell application. Int J Hydrog Energy 43:11820–11829

    Article  CAS  Google Scholar 

  4. Pollet BG, Goh JT (2014) The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim Acta 128:292–303

    Article  CAS  Google Scholar 

  5. Orfanidi A et al (2013) The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. J Appl Electrochem 43(11):1101–1116

    Article  CAS  Google Scholar 

  6. Hooshyari K, Javanbakht M, Adibi M (2016) Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells. Electrochim Acta 205:142–152

    Article  CAS  Google Scholar 

  7. Shabanikia A et al (2015) Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature. Electrochim Acta 154:370–378

    Article  CAS  Google Scholar 

  8. Su H et al (2014) High-performance and durable membrane electrode assemblies for high-temperature polymer electrolyte membrane fuel cells. Electrocatalysis 5(4):361–371

    Article  CAS  Google Scholar 

  9. Chandan A, Hattenberger M, el-kharouf A, du S, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – a review. J Power Sources 231(0):264–278

    Article  CAS  Google Scholar 

  10. Haque MA et al (2017) Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: a review. Int J Hydrog Energy 42(14):9156–9179

    Article  CAS  Google Scholar 

  11. Li Q et al (2003) The CO poisoning effect in PEMFCs operational at temperatures up to 200 C. J Electrochem Soc 150(12):A1599–A1605

    Article  CAS  Google Scholar 

  12. Kim J et al (2014) Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel. cells. 66:41–49

    CAS  Google Scholar 

  13. Oettel C, Rihko-Struckmann L, Sundmacher K (2012) Improved CO tolerance with PtRu anode catalysts in ABPBI based high temperature proton exchange membrane fuel cells. J Fuel Cell Sci Technol 9(3):031009–031007

    Article  CAS  Google Scholar 

  14. Modestov A, Tarasevich M, Leykin A (2011) CO electrooxidation study on Pt and Pt–Ru in H3PO4 using MEA with PBI–H3PO4 membrane. J Power Sources 196(6):2994–3002

    Article  CAS  Google Scholar 

  15. Sharma S et al (2014) Carboxyl group enhanced CO tolerant GO supported Pt catalysts: DFT and electrochemical analysis. Chem Mater 26(21):6142–6151

    Article  CAS  Google Scholar 

  16. Vladislava M, Jovanovic DT, Kowal A, Stoch J, Tripkovic A (2005) Oxidation of formic acid on platinum electrodeposited on polished and oxidized glassy carbon. Electrochem Commun 7:1039–1044

    Article  CAS  Google Scholar 

  17. Hsieh Y-C, C. L-C, Wu P-W, Lee J-F, Lia C-H (2010) Facile surface functionalization of carbon/nafion for enhancement of methanol electro-oxidation. ECS Trans 33(1):2017–2026

    Article  CAS  Google Scholar 

  18. Sieben JM, Duarte MME, Mayer CE (2010) Electro-oxidation of methanol on Pt catalysts electrodeposited onto electroactivated carbon Ru nanostructured fiber materials. ChemCatChem 2010(2):182–189

    Article  CAS  Google Scholar 

  19. Berenguer R, Marco-Lozar JP, Quijada C, Cazorla-Amorós D, Morallón E (2009) Effect of electrochemical treatments on the surface chemistry of activated carbon. Carbon 47:1018–1027

    Article  CAS  Google Scholar 

  20. Zhang Q et al (2017) High performance and durability of polymer-coated Pt electrocatalyst supported on oxidized multi-walled in high-temperature polymer electrolyte fuel cells. Int J Hydrog Energy 42(26):16714–16721

    Article  CAS  Google Scholar 

  21. Duarte MME, Pilla AS, Sieben JM, Mayer CE (2006) Platinum particles electrodeposition on carbon substrates. Electrochem Commun 8:159–164

    Article  CAS  Google Scholar 

  22. Miyake M, Ueda T, Hirato T (2011) Potentiostatic electrodeposition of Pt nanoparticles on carbon black. J Electrochem Soc 158(9):D590–D593

    Article  CAS  Google Scholar 

  23. Jabbari Z et al (2018) Kinetic study of CO desorption from cathodic electrochemically treated carbon paper supported Pt electrodes. Iran. J Hydrog. Fuel Cell 4(3):201–207

  24. Engl T et al (2014) Second cycle is dead: advanced electrode diagnostics for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 161(4):F500–F505

    Article  CAS  Google Scholar 

  25. Dekanski A, Stevanovic J, Stevanovic R, Nikolic BZ, Jovanovic VM (2001) Glassy carbon electrodes. I. Characterization and electrochemical activation. Carbon 39:1195–1205

    Article  CAS  Google Scholar 

  26. Schwenke KU et al (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J Electrochem Soc 162(4):A573–A584

    Article  CAS  Google Scholar 

  27. Arenz M et al (2002) CO adsorption and kinetics on well-characterized Pd films on Pt(1 1 1) in alkaline solutions. Surf Sci 506(3):287–296

    Article  CAS  Google Scholar 

  28. (2008) Electrocatalysis: theory and experiment at the interface. Phys Chem Chem Phys. 10(25):3607–3608

  29. Huang C, Odetola CB, Rodgers M (2015) Nanoparticle seeded pulse electrodeposition for preparing high performance Pt/C electrocatalysts. Appl Catal A Gen 499:55–65

    Article  CAS  Google Scholar 

  30. Sharma S et al (2010) Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J Phys Chem C 114(45):19459–19466

    Article  CAS  Google Scholar 

  31. Rocha TA et al (2013) Nb as an influential element for increasing the CO tolerance of PEMFC catalysts. J Appl Electrochem 43(8):817–827

    Article  CAS  Google Scholar 

  32. Jovanovic VM, Terzić S, Tripković AV, Popović KD, Lović JD (2004) The efect of electrochemically treated glassy carbon on the activity of supported Pt catalyst in methanol oxidation. Electrochem Commun 6:1254–1258

    Article  CAS  Google Scholar 

  33. de la Fuente JLG, Rojas S, Martínez-Huerta MV, Terreros P, Peñ MA, Fierro JLG (2006) Functionalization of carbon support and its influence on the electrocatalytic behaviour of Pt/C in H2 and CO electrooxidation. Carbon 44:1919–1929

    Article  CAS  Google Scholar 

  34. Chen C-Y et al (2014) Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases. Int J Hydrog Energy 39(25):13757–13762

  35. Huang K-P, Lai W-HJIJoHE (2017) Effects of anodic gas conditions on performance and resistance of a PBI/H3PO4 proton exchange membrane fuel cell with metallic bipolar plates. Int J Hydrog Energy 42(39):24960–24967

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narges Fallah.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsham, N., Fallah, N., Nassernejad, B. et al. Fabrication of gas diffusion electrode via Pt electrodeposition on cathodic oxidized carbon paper as the anode for high-temperature polymer membrane fuel cell in the presence of CO. Ionics 25, 3549–3560 (2019). https://doi.org/10.1007/s11581-019-02931-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02931-8

Keywords

Navigation