Skip to main content
Log in

The role silica pore structure plays in the performance of modified carbon paste electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Four silica materials was prepared by using different synthesis procedures, with the goal of obtaining matrices with different designed textures, microporous, mesoporous, and ordered pore structured materials, as MCM-41 and SBA-15. These silica materials were used to prepare bare carbon paste electrode, without addition of other components, as nanostructured or electroactive species. In this way, it was possible to study the influence of the textural characteristics, such as surface area, pore volume, pore size, and pore shape on the electrode performance, in a detailed and individual form. The electrodes were studied by using [Fe(CN)6]3−/4− and sulfamethoxazole as probes, in diffusional processes, employing cyclic voltammetry and differential pulse voltammetry. It was observed that surface area and pore volume contribute expressively to the electroactive area. The worst results were attained for microporous materials (0.34 cm2), while the higher electroactive area values were obtained for materials with ordered pore structure, 2.01 cm2 for MCM-41 and 2.58 cm2 for SBA-15, by using [Fe(CN)6]3−/4− as probe. Regarding sulfamethoxazole as probe, the MCM-41 modified carbon paste electrode presented the best performance. The obtained sensitivity was 24.34 nA L μmol−1 and the detection limit found was 3.10 μmol L−1. These results are satisfactory considering the electrodes are constituted just by bare silica, easy to prepare, without addition of other components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Walcarius A (2018) Silica-based electrochemical sensors and biosensors: recent trends. Curr Opin Electrochem 10:88–97

    Article  CAS  Google Scholar 

  2. Dai Z, Ju H (2012) Bioanalysis based on nanoporous materials. Trends Anal Chem 39:149–161

    Article  CAS  Google Scholar 

  3. Yan F, Lin X, Su B (2016) Vertically ordered silica mesochannel films: electrochemistry and analytical applications. Analyst 141:3482–3495

    Article  CAS  PubMed  Google Scholar 

  4. Melde BJ, Johnson BJ, Charles PT (2008) Mesoporous silicate materials in sensing. Sensors 8:5202–5228

    Article  CAS  PubMed  Google Scholar 

  5. Onizhuk MO, Tkachenko OS, Panteleimonov AV, Varchenko VV, Belikov K, Kholin YV (2018) Electrochemical oxidation of quercetin in aqueous and ethanol-water media with the use of graphite/chemically modified silica ceramic electrode. Ionics 24:1755–1764

    Article  CAS  Google Scholar 

  6. Ramos JVH, Morawski FM, Costa TMH, Dias SLP, Benvenutti EV, de Menezes EW, Arenas LT (2015) Mesoporous chitosan/silica hybrid material applied for development of electrochemical sensor for paracetamol in presence of dopamine. Microporous Mesoporous Mater 217:109–118

    Article  CAS  Google Scholar 

  7. Montenegro LMP, de Souza LV, Lima KO, de Oliveira HPM, Fernandes AU, Morawski FM, Benvenutti EV, Arenas LT, Bianchini D (2018) Copper porphyrin immobilized on MCM-41 surface by using aminopropyl as coupling agent and its use in electrochemical oxygen determination. J Inorg Organomet Polym 28:2518–2524

    Article  CAS  Google Scholar 

  8. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098–4140

    Article  CAS  PubMed  Google Scholar 

  9. Sing KSW, Everett DH, Hau RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  10. Walcarius A (2001) Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials. Electroanalysis 13:701–718

    Article  CAS  Google Scholar 

  11. El-Nahhal IM, El-Ashgar NM (2007) A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications. J Organomet Chem 692:2861–2886s

    Article  CAS  Google Scholar 

  12. de Menezes EW, Nunes MR, Arenas LT, Dias SLP, Garcia ITS, Gushikem Y, Costa TMH, Benvenutti EV (2012) Gold nanoparticle/charged silsesquioxane films immobilized onto Al/SiO2 surface applied on the electrooxidation of nitrite. J Solid State Electrochem 16:3703–3713

    Article  CAS  Google Scholar 

  13. Caldas EM, Novatzky D, Deon M, de Menezes EW, Hertz PF, Costa TMH, Arenas LT, Benvenutti EV (2017) Pore size effect in the amount of immobilized enzyme for manufacturing carbon ceramic biosensor. Microporous Mesoporous Mater 247:95–102

    Article  CAS  Google Scholar 

  14. Walcarius A, Mandler D, Cox JA, Collinson M, Lev O (2005) Exciting new directions in the intersection of functionalized sol–gel materials with electrochemistry. J Mater Chem 15:3663–3689

    Article  CAS  Google Scholar 

  15. Módolo ML, Valandro SR, Pessoa CA, Fujiwara ST (2013) Carbon ceramic electrodes obtained by basic catalysis of sol–gel process. Electrochim Acta 112:783–790

    Article  CAS  Google Scholar 

  16. Morawski FM, Deon M, Nicolodi S, de Menezes EW, Costa TMH, Dias SLD, Benvenutti EV, Arenas LT (2018) Magnetic silica/titania xerogel applied as electrochemical biosensor for catechol and catecholamines. Electrochim Acta 264:319–328

    Article  CAS  Google Scholar 

  17. Didó CA, Caneppele CDG, Schneid AC, Pereira MB, Costa TMH, Benvenutti EV (2018) Small gold nanoparticles with narrow size distribution achieved in SBA-15 pores by using ionic silsesquioxane instead of thiol group as stabilizer and adhesion agent. Microporous Mesoporous Mater 270:48–56

    Article  CAS  Google Scholar 

  18. Rao H, Wang X, Du X, Xue Z (2013) Mini review: electroanalytical sensors of mesoporous silica materials. Anal Lett 46:2789–2812

    Article  CAS  Google Scholar 

  19. Walcarius A (2015) Mesoporous materials-based electrochemical sensors. Electroanalysis 27:1303–1340

    Article  CAS  Google Scholar 

  20. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45

    Article  CAS  PubMed  Google Scholar 

  21. Côme YBS, Lalo H, Wang Z, Kohring G-W, Hempelmann R, Etienne M, Walcarius A, Kuhn A (2013) Interest of the sol-gel approach for multiscale tailoring of porous bioelectrode surfaces. Electroanalysis 25:621–629

    Article  CAS  Google Scholar 

  22. Deon M, Caldas EM, Rosa DS, de Menezes EW, Dias SLP, Pereira MB, Costa TMH, Arenas LT, Benvenutti EV (2015) Mesoporous silica xerogel modified with bridged ionic silsesquioxane used to immobilize copper tetrasulfonated phthalocyanine applied to electrochemical determination of dopamine. J Solid State Electrochem 19:2095–2105

    Article  CAS  Google Scholar 

  23. Ganesan V, Walcarius A (2008) Ion exchange and ion exchange voltammetry with functionalized mesoporous silica materials. Mater Sci Eng B 149:123–132

    Article  CAS  Google Scholar 

  24. Walcarius A, Delacote C, Sayen S (2004) Electrochemical probing of mass transfer rates in mesoporous silica-based organic–inorganic hybrids. Electrochim Acta 49:3775–3783

    Article  CAS  Google Scholar 

  25. Xie X, Zhou D, Zheng X, Huang W, Wu K (2009) Electrochemical sensing of rutin using an MCM-41 modified electrode. Anal Lett 42:678–688

    Article  CAS  Google Scholar 

  26. da Silva DN, Tarley CRT, Pereira AC (2017) Development of a sensor based on modified carbon paste with com iron (iii) protoporphyrin immobilized on sinbzn silica matrix for l-tryptophan determination. Electroanalysis 29:2793–2802

    Article  CAS  Google Scholar 

  27. Sánchez A, Morante-Zarcero S, Pérez-Quintanilla D, del Hierro I, Sierra I (2013) A comparative study on carbon paste electrodes modified with hybrid mesoporous materials for voltammetric analysis of lead (II). J Electroanal Chem 689:76–82

    Article  CAS  Google Scholar 

  28. Wang J, Walcarius A (1996) Zeolite containing oxidase-based carbon paste biosensors. J Electroanal Chem 404:237–242

    Article  Google Scholar 

  29. Walcarius A, Rozanska S, Bessièrea J, Wang J (1999) Screen-printed zeolite-modified carbon electrodes. Analyst 124:1185–1190

    Article  CAS  Google Scholar 

  30. Zhao Y, Yuan F, Quan X, Yu H, Chen S, Zhao H, Liu Z, Hilal N (2015) An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Anal Methods 7:2693–2698

    Article  CAS  Google Scholar 

  31. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Science 279:548–552

    Article  CAS  PubMed  Google Scholar 

  32. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  33. Webb PA, Orr C, Camp RW, Olivier JP, Yunes YS (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross

    Google Scholar 

  34. Han J, Zhao J, Li Z, Zhang H, Yan Y, Cao D, Wang G (2018) Nanoporous carbon derived from dandelion pappus as an enhanced electrode material with low cost for amperometric detection of tryptophan. J Electroanal Chem 818:149–156

    Article  CAS  Google Scholar 

  35. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  36. Grando SR, Benvenutti EV, Campo LF, Costa TMH (2016) Fluorescent mesoporous organosilicas containing 1,4-diureyl terephthalate moieties. J Photochem Photobiol A 325:22–28

    Article  CAS  Google Scholar 

  37. Huang L, Kawi S, Hidajat K, Ng SC (2005) Preparation of M41S family mesoporous silica thin films on porous oxides. Microporous Mesoporous Mater 82:87–97

    Article  CAS  Google Scholar 

  38. Walcarius A (2010) Template-directed porous electrodes in electroanalysis. Anal Bioanal Chem 396:261–272

    Article  CAS  PubMed  Google Scholar 

  39. Weng C-J, Hsu P-H, Hsu S-C, Chang C-H, Hung W-I, Wu P-S, Yeh J-M (2013) Synthesis of electroactive mesoporous gold–organosilica nanocomposite materials via a sol–gel process with non-surfactant templates and the electroanalysis of ascorbic acid. J Mater Chem B 1:4983–4991

    Article  CAS  Google Scholar 

  40. Semaan FS, Pinto EM, Cavalheiro ETG, Christopher MA, Brett CMA (2008) A graphite-polyurethane composite electrode for the analysis of furosemide. Electroanalysis 20:2287–2293

    Article  CAS  Google Scholar 

  41. del Torno-de Román L, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ (2016) Tyrosinase based biosensor for the electrochemical determination of sulfamethoxazole. Sensors Actuators B Chem 227:48–53

    Article  CAS  Google Scholar 

  42. Andrade LS, Rocha-Filho RC, Cass QB, Fatibello-Filho O (2009) Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron-doped diamond electrode. Electroanalysis 21:1475–1480

    Article  CAS  Google Scholar 

  43. Calaça GN, Pessoa CA, Wohnrath K, Nagata N (2014) Simultaneous determination of sulfamethoxazole and trimethoprim in pharmaceutical formulations by square wave voltammetry. Int J Pharm Pharm Sci 6:438–442

    Google Scholar 

  44. Issac S, Kumar KG (2009) Voltammetric determination of sulfamethoxazole at a multiwalled carbon nanotube modified glassy carbon sensor and its application studies. Drug Test Anal 1:350–354

    Article  CAS  PubMed  Google Scholar 

  45. Arvand M, Ansari R, Heydari L (2011) Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater Sci Eng C 31:1819–1825

    Article  CAS  Google Scholar 

  46. Msagati TAM, Ngila JC (2002) Voltammetric detection of sulfonamides at a poly (3-methylthiophene) electrode. Talanta 58:605–610

    Article  CAS  PubMed  Google Scholar 

  47. Joseph R, Kumar KG (2010) Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test Anal 2:278–283

    Article  CAS  PubMed  Google Scholar 

  48. Andrade LS, Rocha-Filho RC, Cass QB, Fatibello-Filho O (2010) A novel multicommutation stopped-flow system for the simultaneous determination of sulfamethoxazole and trimethoprim by differential pulse voltammetry on a boron-doped diamond electrode. Anal Methods 2:402–407

    Article  CAS  Google Scholar 

  49. Souza CD, Braga OC, Vieira IC, Spinelli A (2008) Electroanalytical determination of sulfadiazine and sulfamethoxazole in pharmaceuticals using a boron-doped diamond electrode. Sensors Actuators B Chem 135:66–73

    Article  CAS  Google Scholar 

  50. Cesarino I, Cesarino V, Lanza MRV (2013) Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim. Sensors Actuators B Chem 188:1293–1299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior) for financial support and grants. The authors also thank CNANO (Centro de Nanociência e Nanotecnologia) and CMM (Centro de Microscopia e Microanálise) of UFRGS (Universidade Federal do Rio Grande do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edilson V. Benvenutti.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, L.V., da Rosa, D.S., Tkachenko, O.S. et al. The role silica pore structure plays in the performance of modified carbon paste electrodes. Ionics 25, 3259–3268 (2019). https://doi.org/10.1007/s11581-019-02882-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02882-0

Keywords

Navigation