Skip to main content
Log in

Dielectric and conduction mechanism studies of Ni doped LiMn2O4 synthesized by solution combustion method

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, structural, morphological, dielectrical, and electrochemical properties of LiNixMn(2-x)O4 (where x = 0, 0.1,0.3, 0.5 mol%) prepared by solution combustion method were reported. X-ray diffraction studies confirmed the formation of cubic spinel structure without any impurity phases. Scanning electron micrographs revealed grains of micrometer range with a spherical like morphology and narrow size distribution. Dielectric parameters such as dielectric constant, dielectric loss, impedance, and electrical modulus were found to depend on temperature, frequency, and dopant concentration. AC conductivity was found to increase with increase in temperature exhibiting negative temperature co-efficient of resistance (NTCR) property in the material. Complex impedance and electrical modulus studies revealed the existence of temperature-dependent electrical relaxation in the material. The Correlated Barrier Hopping (CBH) model of conduction mechanism was confirmed by the decrease in s parameter with increase in temperature. Charge-discharge studies revealed the stabilization of spinel lattice by Ni ions, contributing to better capacity retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee HW, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries. J Power Sources 196:10712–10716

    Article  CAS  Google Scholar 

  2. Zhang Q, Mei J, Wang X, Tang F, Fan W, Lu W (2014) High performance spinel LiNi0.5Mn1.5O4 cathode material by lithium polyacrylate coating for lithium ion battery. Electrochim Acta 143:265–271

    Article  CAS  Google Scholar 

  3. Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21:1695–1707

    Article  CAS  Google Scholar 

  4. Liu MH, Huang HT, Lin CM, Chen JM, Liao SC (2014) Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries. Electrochim Acta 120:133–139

    Article  CAS  Google Scholar 

  5. Thackeray MM, Johnson P, de Picciotto LA, Bruce PG, Goodenough JB (1984) Electrochemical extraction of lithium from LiMn2O4. Mat Res Bull 19:179–187

    Article  CAS  Google Scholar 

  6. Wu HM, Tu JP, Yuan YF, Li Y, Zhao XB, Cao GS (2005) Electrochemical and ex situ XRD studies of a LiMn1.5Ni0.5O4 high-voltage cathode material. Electrochim Acta 50:4104–4108

    Article  CAS  Google Scholar 

  7. Dygas JR, Kopec M, Krok F, Lisovytskiy D, Pielaszek J (2005) Conductivity and dielectric relaxation phenomena in lithium manganese spinel. Solid State Ionics 176:2153–2161

    Article  CAS  Google Scholar 

  8. Fang X, Ge M, Rong J, Zhou C (2013) Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life. J Mater Chem A 1:4083–4088

    Article  CAS  Google Scholar 

  9. Liu GQ, Wen L, Liu YM (2010) Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Solid State Electrochem 14:2191–2202

    Article  CAS  Google Scholar 

  10. Kebede MA, Kunjuzwa N, Jafta CJ, Mathe MK, Ozoemena KI (2014) Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2-xO4; 0≤x≤0.2) for lithium ion battery: enhancing energy storage, capacity retention, and lithium ion transport. Electrochim Acta 128:172–177

    Article  CAS  Google Scholar 

  11. Wei YJ, Yan LY, Wang CZ, Xu XG, Wu F, Chen G (2004) Effects of Ni doping on [MnO6] octahedron in LiMn2O4. J Phys Chem B 108:18547–18551

    Article  CAS  Google Scholar 

  12. Kebede M, Kunjuzwa N, Ozoemena K, Mathe M (2013) Synthesis and electrochemical properties of Ni doped spinel LiNixMn2-xO4 (0 ≤ x ≤ 0.5) cathode materials for Li-ion battery. ECS Trans 50:1–14

    Article  Google Scholar 

  13. Wen JW, Zhang DW, Zang Y, Sun X, Cheng B, Ding CX, Yu Y, Chen CH (2014) One-step synthesis and effect of heat-treatment on the structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Electrochim Acta 133:515–521

    Article  CAS  Google Scholar 

  14. Mo M, Hui KS, Hong X, Guo J, Ye C, Li A, Hu N, Huang Z, Jiang J, Liang J, Chen H (2014) Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5 V lithium ion batteries. Appl Surf Sci 290:412–418

    Article  CAS  Google Scholar 

  15. Liu G, Kong X, Sun H, Wang B, Yi Z, Wang Q (2014) A facile template method to synthesize significantly improved LiNi0.5Mn1.5O4 using corn stalk as a bio-template. Electrochim Acta 141:141–148

    Article  CAS  Google Scholar 

  16. Kong X, Sun H, Wang Q, Yi Z, Wang B, Liu G (2014) Improvement in the electrochemical properties of LiNi0.5Mn1.5O4 lithium-ion battery cathodes prepared by a modified low temperature solution combustion synthesis. Ceram Int 40:11611–11617

    Article  CAS  Google Scholar 

  17. Lee YS, Sun YK, Ota S, Miyashita T, Yoshio M (2002) Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process. Electrochem Commun 4:989–994

    Article  CAS  Google Scholar 

  18. Park JE, Kim K, Park SH, Park ES, Pyeon MW, Lee MJ (2013) Reaction sequence and electrochemical properties of lithium nickel manganese oxide cathode materials synthesized via hydrothermal reaction followed by subsequent heat treatment. Int J Electrochem Sci 8:6220–6230

    CAS  Google Scholar 

  19. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opinion Solid State Mater Sci 12:44–50

    Article  CAS  Google Scholar 

  20. Zhao M, Zhang B, Huang G, Dai W, Wang F, Song X (2012) Electrochemical performance of modified LiMn2O4 used as cathode material for an aqueous rechargeable lithium battery. Energy Fuel 26:1214–1219

    Article  CAS  Google Scholar 

  21. Li X, Guo W, Liu Y, He W, Xiao Z (2014) Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: ionic liquid assisted synthesis and the effect of CuO coating. Electrochim Acta 116:278–283

    Article  CAS  Google Scholar 

  22. Kavitha N, Manohar P (2016) Magnetic and electrical properties of magnesium-substituted Ni-Zn ferrites. J Supercond Nov Magn 29:2151–2157

    Article  CAS  Google Scholar 

  23. Anbarasi P, SatheeshKumar E, Ilango K, Manohar P (2017) Dielectric studies and conduction mechanism of Zn and Ag modified LiMn2O4 synthesized by solution combustion method. Appl Phys A Mater Sci Process 123:407

    Article  Google Scholar 

  24. Wu HM, Tu JP, Chen XT, Li Y, Zhao XB, Cao GS (2007) Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J Solid State Electrochem 11:173–176

    Article  Google Scholar 

  25. El-Mallah HM (2012) AC electrical conductivity and dielectric properties of perovskite (Pb,Ca)TiO3 ceramic. Acta Phys Pol A 122:174–179

    Article  CAS  Google Scholar 

  26. Axmann P, Gabrielli G, Wohlfahrt-Mehrens M (2016) Tailoring high-voltage and high performance LiNi0.5Mn1.5O4 cathode material for high energy lithium-ion batteries. J Power Sources 301:151–159

    Article  CAS  Google Scholar 

  27. Anand K, Ramamurthy B, Veeraiah V, Vijaya Babu K (2016) Structural , dielectric and conductivity studies of LiNi0.75Mg0.25-xCuxPO4 synthesized by solid state reaction method. Process Appl Ceram 10:47–55

    Article  CAS  Google Scholar 

  28. Zidi N, Chaouchi A, d’Astorg S, Rguiti M, Courtois C (2014) Dielectric and impedance spectroscopy characterizations of CuO added (Na0.5Bi0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. J Alloys Compd 590:557–564

    Article  CAS  Google Scholar 

  29. Vijaya Babu K, Seeta Devi L, Veeraiah V, Anand K (2016) Structural and dielectric studies of LiNiPO4 and LiNi0.5Co0.5PO4 cathode materials for lithium-ion batteries. J Asian Ceram Soc 4:269–276

    Article  Google Scholar 

  30. Suresh S (2014) Studies on the dielectric properties of CdS nanoparticles. Appl Nanosci 4:325–329

    Article  CAS  Google Scholar 

  31. Sen S, Choudhary RNP (2004) Effect of doping Ca ions on structural and electrical properties of Ba(Zr0.05Ti0.95)O3 electroceramics. J Mater Sci Mater Electron 15:671–675

    Article  CAS  Google Scholar 

  32. Fares S (2011) Frequency dependence of the electrical conductivity and dielectric constants of polycarbonate ( Makrofol-E ) film under the effects of γ-radiation. American J Mater Sci 1:52–56

    Google Scholar 

  33. Singla G, Singh K (2013) Dielectric properties of Ti substituted Bi2−xTixO3+x/2 ceramics. Ceram Int 39:1785–1792

    Article  CAS  Google Scholar 

  34. Mangalaraja RV, Ananthakumar S, Manohar P, Gnanam FD (2003) Dielectric behavior of Ni1-xZnxFe2O4 prepared by flash combustion technique. Mater Lett 57:1151–1155

    Article  CAS  Google Scholar 

  35. Mumtaz M, Ali L, Jabbar A, Rabbani MW, Naveed M, Imran M, Amin B, Khan MN, Sajid MU (2016) Tuning of dielectric properties of (ZnO)x-(CuTl-1223 ) nanoparticles-superconductor composites. Ceram Int 42:11193–11200

    Article  CAS  Google Scholar 

  36. Rhaiem AB, Hlel F, Guidara K, Gargouri M (2009) Electrical conductivity and dielectric analysis of AgNaZnP2O7 compound. J Alloys Compd 485:718–723

    Article  Google Scholar 

  37. Wahba AM, Mohamed MB (2014) Structural, magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite. Ceram Int 40:6127–6135

    Article  Google Scholar 

  38. Shukla A, Choudhary RNP, Thakur AK, Pradhan DK (2010) Structural, microstructural and electrical studies of La and Cu doped BaTiO3 ceramics. Physica B 405:99–106

    Article  CAS  Google Scholar 

  39. Benali A, Bejar M, Dhahri E, Graça MFP, Costa LC (2015) Electrical conductivity and ac dielectric properties of La0.8Ca0.2-xPbxFeO3 (x = 0.05, 0.10 and 0.15) perovskite compounds. J Alloys Compd 653:506–512

    Article  CAS  Google Scholar 

  40. Margareta PG, Slobotka A, Marjan M, Sandra DL (2014) Impedance and AC conductivity of GdCr1−xCoxO3 ( x = 0, 0.33, 0.5, 0.67 and 1) perovskites. J Am Ceram Soc 97:3864–3871

    Article  Google Scholar 

  41. Farea AMM, Kumar S, Batoo KM, Yousef A, Alimuddin (2008) Influence of frequency, temperature and composition on electrical properties of polycrystalline Co0.5CdxFe2.5-xO4 ferrites. Physica B 403:684–701

    Article  CAS  Google Scholar 

  42. Badapanda T, Sarangi S, Behera B, Anwar S (2014) Structural and impedance spectroscopy study of samarium modified barium zirconium titanate ceramic prepared by mechanochemical route. Curr Appl Phys 14:1192–1200

    Article  Google Scholar 

  43. Das PR, Pati B, Sutar BC, Choudhury RNP (2012) Study of structural and electrical properties of a new type of complex tungsten bronze electroceramics; Li2Pb2Y2W2Ti4V4O30. J Mod Phys 3:870–880

    Article  Google Scholar 

  44. Badapanda T, Harichandan RK, Nayak SS, Mishra A, Anwar S (2014) Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi4Ti4O15 Aurivillius ceramic. Process Appl Ceram 8:145–153

    Article  Google Scholar 

  45. Rosaiah P, Hussain OM (2013) Synthesis, electrical and dielectrical properties of lithium iron oxide. Adv Mat Lett 4:288–295

    Article  Google Scholar 

  46. Bishnoi B, Mehta PK, Panchal CJ, Desai MS, Kumar R (2011) Structural, optical, and dielectric properties of A[(Mg0.32Co0.02)Nb0.66]O3 where (A = Ba, Sr or Ca). J Nano- Electron Phys 3:698–708

    Google Scholar 

  47. Sahoo S, Dash U, Parashar SKS, Ali SM (2013) Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J Adv Ceram 2:291–300

    Article  CAS  Google Scholar 

  48. Fayek MK, Mostafa MF, Sayedahmed F, Ata-Allah SS, William MK (2000) On the electrical behavior of nickel ferrite-gallates. J Magn Magn Mater 210:189–195

    Article  CAS  Google Scholar 

  49. Chithra Lekha P, Subramanian S, Pathinettam Padiyan D (2009) Investigation of pseudocapacitance effect and frequency dependence of ac impedance in polyaniline-polyoxometalate hybrids. J Mater Sci 44:6040–6053

    Article  CAS  Google Scholar 

  50. Arumugam D, Paruthimal Kalaignan G, Vediappan K, Lee CW (2010) Synthesis and electrochemical characterizations of nano-scaled Zn doped LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochim Acta 55:8439–8444

    Article  CAS  Google Scholar 

  51. Ding YL, Xie J, Cao GS, Zhu TJ, Yu HM, Zhao XB (2011) Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv Funct Mater 21:348–355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. P. Sagayaraj and Mr. Mahesh, Department of Physics, Loyola College, Chennai, for extending electrochemical workstation for charge-discharge studies.

Funding

Anbarasi. P thankfully acknowledge the financial support from University Grants Commission, New Delhi in the form of UGC–RGNF (Rajiv Gandhi National Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manohar Paramasivam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugazhendhi, A., Ellappan, S., Kumaresan, I. et al. Dielectric and conduction mechanism studies of Ni doped LiMn2O4 synthesized by solution combustion method. Ionics 24, 3745–3755 (2018). https://doi.org/10.1007/s11581-018-2560-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2560-0

Keywords

Navigation