Skip to main content
Log in

Electrochemical determination of paracetamol in pharmaceutical tablet by a novel oxidative pretreated pencil graphite electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present paper reports the preparation of a novel, sensitive, and low-cost electrochemical sensor for the determination of paracetamol (PAR). The main strategy of this study lies on providing the surface of a pencil graphite electrode (PGE) with various oxygen-bearing functional groups by in situ oxidative pretreatment, which enables the PGE with larger surface area to adsorb PAR efficiently and mediates electron transfer. The developed oxidative pretreated PGE (OP-PGE) sensor was used for the first time to determine PAR from pure and commercial tablet dosage forms. Surface morphology of the OP-PGE was characterized by scanning electron microscopy (SEM) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Electrochemical behavior of PAR on the OP-PGE was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimized experimental conditions, the linear dynamic range of calibration was between 0.052–2.85 μM with a detection limit of 18.4 nM (S/N = 3). The OP-PGE showed a good sensitivity, selectivity, and stability compared to the bare PGE. Results revealed that the OP-PGE could successfully determine PAR from the tablets with no tedious electrode fabrication and sample pretreatment methods, and in situ oxidative pretreatment could be an alternative, simple and sensitive approach for the fabrication of PGE-based electrodes to use them in the pharmaceutical analysis in the future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bosch ME, Sánchez AJR, Rojas FS, Ojeda CB (2006) Determination of paracetamol: historical evolution. J Pharm Biomed Anal 42(3):291–321. https://doi.org/10.1016/j.jpba.2006.04.007

    Article  CAS  Google Scholar 

  2. Saraswathyamma B, Grzybowska I, Orlewska C, Radecki J, Dehaen W, Kumar KG, Radecka H (2008) Electroactive dipyrromethene-Cu(II) monolayers deposited onto gold electrodes for voltammetric determination of paracetamol. Electroanalysis 20(21):2317–2323. https://doi.org/10.1002/elan.200804328

    Article  CAS  Google Scholar 

  3. Esteve-Romero J, Albiol-Chiva J, Peris-Vicente J (2016) A review on development of analytical methods to determine monitorable drugs in serum and urine by micellar liquid chromatography using direct injection. Anal Chim Acta 926:1–16. https://doi.org/10.1016/j.aca.2016.04.026

    Article  CAS  PubMed  Google Scholar 

  4. Mohamed HM (2016) Screen-printed disposable electrodes: pharmaceutical applications and recent developments. TrAC Trends Anal Chem 82:1–11. https://doi.org/10.1016/j.trac.2016.02.010

    Article  CAS  Google Scholar 

  5. Cernat A, Tertiş M, Săndulescu R, Bedioui F, Cristea A, Cristea C (2015) Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: a review. Anal Chim Acta 886:16–28. https://doi.org/10.1016/j.aca.2015.05.044

    Article  CAS  PubMed  Google Scholar 

  6. Cheng W, Xu J, Pan F (2005) Progress in methods for determination of acetaminophen in the compounds. Zhongguo Yiyuan Yaoxue Zazhi 25(10):967–968

    CAS  Google Scholar 

  7. Ajay G (2015) Method development and its validation for simultaneous estimation of lornoxicam and paracetamol as API and in tablet dosage form by UV spectrophotometry using hydrotropic agents. Int J Pharm Qual Assur 6(2):45–53

    Google Scholar 

  8. David IG, Popa D-E, Buleandra M (2017) Pencil graphite electrodes: a versatile tool in electroanalysis. J Anal Methods Chem 2017:22–22. https://doi.org/10.1155/2017/1905968

    Article  CAS  Google Scholar 

  9. Mirkhalaf F, Tammeveski K, Schiffrin DJ (2009) Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template. Phys Chem Chem Phys 11(18):3463–3471. https://doi.org/10.1039/b818439a

    Article  CAS  PubMed  Google Scholar 

  10. Uslu B, Özkan SA, Şentürk Z (2006) Electrooxidation of the antiviral drug valacyclovir and its square-wave and differential pulse voltammetric determination in pharmaceuticals and human biological fluids. Anal Chim Acta 555(2):341–347. https://doi.org/10.1016/j.aca.2005.09.034

    Article  CAS  Google Scholar 

  11. Kahlert H (2008) Functionalized carbon electrodes for pH determination. J Solid State Electrochem 12(10):1255–1266. https://doi.org/10.1007/s10008-008-0566-7

    Article  CAS  Google Scholar 

  12. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2010) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1):24–36. https://doi.org/10.1016/j.carbon.2010.08.034

    Article  CAS  Google Scholar 

  13. Hanysova L, Kastner P, Klimes J (2005) Degradation products and impurities of paracetamol from the viewpoint of their analytical detection. Chem List 99(9):647–652

    CAS  Google Scholar 

  14. Pittman CU Jr, He GR, Wu B, Gardner SD (1997) Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine. Carbon 35(3):317–331. https://doi.org/10.1016/S0008-6223(97)89608-X

    Article  CAS  Google Scholar 

  15. Lee DW, De Los SVL, Seo JW, Felix LL, Bustamante DA, Cole JM, Barnes CHW (2010) The structure of graphite oxide: investigation of its surface chemical groups. J Phys Chem B 114(17):5723–5728. https://doi.org/10.1021/jp1002275

    Article  CAS  PubMed  Google Scholar 

  16. Tan L-L, Ong W-J, Chai S-P, Mohamed AR (2013) Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett 8(1):465. https://doi.org/10.1186/1556-276x-8-465

    Article  PubMed  PubMed Central  Google Scholar 

  17. Navratil R, Kotzianova A, Halouzka V, Opletal T, Triskova I, Trnkova L, Hrbac J (2016) Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study. J Electroanal Chem 783(Supplement C):152–160. https://doi.org/10.1016/j.jelechem.2016.11.030

    Article  CAS  Google Scholar 

  18. Song L, Chen J, Bian Y, Zhu L, Zhou Y, Xiang Y, Xia D (2015) Synthesis, characterization and desulfurization performance of MCM-41 functionalized with cu by direct synthesis and organosilanes by grafting. J Porous Mater 22(2):379–385. https://doi.org/10.1007/s10934-014-9906-4

    Article  CAS  Google Scholar 

  19. Leyden DE, Atwater JB (1991) Hydrolysis and condensation of alkoxysilanes investigated by internal reflection FTIR spectroscopy. J Adhes Sci Technol 5(10):815–829. https://doi.org/10.1163/156856191X00233

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu X, Li L, Guo Z, Xue Z, Lu X (2016) An electrochemical paracetamol sensor based on layer-by-layer covalent attachment of MWCNTs and a G4.0 PAMAM modified GCE. Anal Methods 8(10):2218–2225. https://doi.org/10.1039/c5ay03241e

    Article  CAS  Google Scholar 

  21. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37(9):1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9

    Article  CAS  Google Scholar 

  22. Wang X, Xing W, Zhang P, Song L, Yang H, Hu Y (2012) Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol 72(6):737–743. https://doi.org/10.1016/j.compscitech.2012.01.027

    Article  CAS  Google Scholar 

  23. Fu Y, Yuan R, Tang D, Chai Y, Xu L (2005) Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids Surf B: Biointerfaces 40(1):61–66. https://doi.org/10.1016/j.colsurfb.2004.10.022

    Article  CAS  PubMed  Google Scholar 

  24. Tadi KK, Motghare RV, Ganesh V (2014) Electrochemical detection of sulfanilamide using pencil graphite electrode based on molecular imprinting technology. Electroanalysis 26(11):2328–2336. https://doi.org/10.1002/elan.201400251

    Article  CAS  Google Scholar 

  25. Zheng X, Tian D, Duan S, Wei M, Liu S, Zhou C, Li Q, Wu G (2014) Polypyrrole composite film for highly sensitive and selective electrochemical determination sensors. Electrochim Acta 130(Supplement C):187–193. https://doi.org/10.1016/j.electacta.2014.03.018

    Article  CAS  Google Scholar 

  26. Li Y, Wang P, Wang L, Lin X (2007) Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron 22(12):3120–3125. https://doi.org/10.1016/j.bios.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  27. Ates M (2011) Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog Org Coat 71(1):1–10. https://doi.org/10.1016/j.porgcoat.2010.12.011

    Article  CAS  Google Scholar 

  28. Martin Santos A, Wong A, Araújo Almeida A, Fatibello-Filho O (2017) Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles. Talanta 174:610–618. https://doi.org/10.1016/j.talanta.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  29. Yang G, Cao J, Li L, Rana RK, Zhu J-J (2013) Carboxymethyl chitosan-functionalized graphene for label-free electrochemical cytosensing. Carbon 51(Supplement C):124–133. https://doi.org/10.1016/j.carbon.2012.08.020

    Article  CAS  Google Scholar 

  30. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555–1567. https://doi.org/10.1007/s00216-008-1970-7

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira BSC, Oliveira-Brett AM (2010) Voltammetric and electrochemical impedance spectroscopy characterization of a cathodic and anodic pre-treated boron doped diamond electrode. Electrochim Acta 55(15):4599–4605. https://doi.org/10.1016/j.electacta.2010.03.016

    Article  CAS  Google Scholar 

  32. Bueno PR, Fabregat-Santiago F, Davis JJ (2013) Elucidating capacitance and resistance terms in confined electroactive molecular layers. Anal Chem 85(1):411–417. https://doi.org/10.1021/ac303018d

    Article  CAS  PubMed  Google Scholar 

  33. Alipour E, Majidi MR, Saadatirad A, Golabi SM, Alizadeh AM (2013) Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim Acta 91:36–42. https://doi.org/10.1016/j.electacta.2012.12.079

    Article  CAS  Google Scholar 

  34. Dilgin Y, Kızılkaya B, Dilgin DG, Gökçel Hİ, Gorton L (2013) Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin. Colloids Surf B: Biointerfaces 102(Supplement C):816–821. https://doi.org/10.1016/j.colsurfb.2012.09.030

    Article  CAS  PubMed  Google Scholar 

  35. Lu T-L, Tsai Y-C (2011) Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode. Sensors Actuators B Chem 153(2):439–444. https://doi.org/10.1016/j.snb.2010.11.013

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

  37. Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanalysis 17(15–16):1341–1346. https://doi.org/10.1002/elan.200403270

    Article  CAS  Google Scholar 

  38. Osteryoung JG, Osteryoung RA (1985) Square wave voltammetry. Anal Chem 57(1):101–110. https://doi.org/10.1021/ac00279a004

    Article  Google Scholar 

  39. Mirceski V, Gulaboski R, Lovric M, Bogeski I, Kappl R, Hoth M (2013) Square-wave voltammetry: a review on the recent progress. Electroanalysis 25(11):2411–2422. https://doi.org/10.1002/elan.201300369

    Article  CAS  Google Scholar 

  40. Dai Y, Li X, Lu X, Kan X (2016) Voltammetric determination of paracetamol using a glassy carbon electrode modified with Prussian blue and a molecularly imprinted polymer, and ratiometric read-out of two signals. Microchim Acta 183(10):2771–2778. https://doi.org/10.1007/s00604-016-1926-0

    Article  CAS  Google Scholar 

  41. Gorcay H, Celik I, Yurdakul E, Sahin Y, Kokten S (2016) Highly sensitive electrochemical determination of acetaminophen in pharmaceuticals by poly[2, 5-di(2-Thiophenyl)-1-p-(Tolyl)Pyrrole] modified pencil graphite electrode. IEEE Sensors J 16(9):2914–2921. https://doi.org/10.1109/JSEN.2016.2526609

    Article  CAS  Google Scholar 

  42. Ahmadpour-Mobarakeh L, Nezamzadeh-Ejhieh A (2015) A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen. Mater Sci Eng C 49:493–499. https://doi.org/10.1016/j.msec.2015.01.028

    Article  CAS  Google Scholar 

  43. Atta NF, Galal A, El-Said DM (2015) A novel electrochemical sensor for paracetamol based on β-cyclodextrin/Nafion®/polymer nanocomposite. Int J Electrochem Sci 10(2):1404–1419

    Google Scholar 

  44. Khaskheli AR, Fischer J, Barek J, Vyskočil V, Sirajuddin BMI (2013) Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite-polystyrene composite film modified electrode. Electrochim Acta 101:238–242. https://doi.org/10.1016/j.electacta.2012.09.102

    Article  CAS  Google Scholar 

  45. Narayana PV, Reddy TM, Gopal P, Naidu GR (2014) Electrochemical sensing of paracetamol and its simultaneous resolution in the presence of dopamine and folic acid at a multi-walled carbon nanotubes/poly(glycine) composite modified electrode. Anal Methods 6(23):9459–9468. https://doi.org/10.1039/C4AY02068E

    Article  CAS  Google Scholar 

  46. Ghadimi H, MAR T, ASM A, Mohamed N, Ab Ghani S (2013) Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal Chim Acta 765(Supplement C):70–76. https://doi.org/10.1016/j.aca.2012.12.039

    Article  CAS  PubMed  Google Scholar 

  47. Özcan A, Şahin Y (2011) A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode. Anal Chim Acta 685(1):9–14. https://doi.org/10.1016/j.aca.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  48. Yiğit A, Yardım Y, Çelebi M, Levent A, Şentürk Z (2016) Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. Talanta 158(Supplement C):21–29. https://doi.org/10.1016/j.talanta.2016.05.046

    Article  CAS  PubMed  Google Scholar 

  49. Esteban M, Ariño C, Díaz-Cruz JM (2006) Chemometrics in electroanalytical chemistry. Crit Rev Anal Chem 36(3–4):295–313. https://doi.org/10.1080/10408340600969981

    Article  CAS  Google Scholar 

  50. Harris DC (2010) Quantitative chemical analysis. W. H. Freeman, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Keskin.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, E., Ertürk, A.S. Electrochemical determination of paracetamol in pharmaceutical tablet by a novel oxidative pretreated pencil graphite electrode. Ionics 24, 4043–4054 (2018). https://doi.org/10.1007/s11581-018-2532-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2532-4

Keywords

Navigation