Skip to main content
Log in

A study on blend polymer electrolyte based on poly(vinyl alcohol)-poly (acrylonitrile) with magnesium nitrate for magnesium battery

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Studies on magnesium ion conducting blend polymer electrolyte (BPE) at room temperature are reported. BPE films of optimized 92.5PVA:7.5PAN ratio in view of its maximum conductivity with various concentrations of magnesium salt—Mg(NO3)2—of different molar mass percentages (0.1, 0.2, 0.3, and 0.4 m.m.%) have been prepared using solution-casting technique with dimethylformamide (DMF) as solvent. The promising characteristic features of these films have been studied. Possible conformational changes in the polymer host 92.5PVA:7.5PAN due to Mg(NO3)2 entrapment have been investigated by FTIR and XRD analysis. The composition 92.5PVA:7.5PAN:0.3 m.m.% Mg(NO3)2 offers maximum electrical conductivity of 1.71 × 10−3 S/cm at room temperature. The σ values follow the Arrhenius equation, and the activation energy for the optimized composition is 0.36 eV. The variations in glass transition temperature have been found using differential scanning calorimeter. Mg2+ ion conduction in the BPE film is confirmed using transference number measurement and cyclic voltammetry. The transport number of the Mg2+ ion is 0.30. Using linear sweep voltammetry, the electrochemical stability window for the highest BPE has been measured. Primary magnesium battery has been constructed using the maximum conducting membrane, and its output characteristics have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Crowther O, West AC (2008) Effect of electrolyte composition on lithium dendrite growth. J Electrochem Soc 155:A806–A811

    Article  CAS  Google Scholar 

  3. Matsui M (2011) Study on electrochemically deposited Mg metal. J Power Sources 196:7048–7055

    Article  CAS  Google Scholar 

  4. Kim HS, Arthur TS, Allred GD, Zajicek J, Newman JG, Rodnyansky AE, Oliver AG, Boggess WC, Muldoon J (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427

    Article  PubMed Central  Google Scholar 

  5. Wu ID, Chang FC (2007) Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48:989–996

    Article  CAS  Google Scholar 

  6. Papke BL, Ratner MA, Shriver DF (1982) Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts. J Electrochem Soc 129:1694–1701

    Article  CAS  Google Scholar 

  7. Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25:1428–1434

    Article  CAS  Google Scholar 

  8. Hema M, Tamilselvi P, Hirankumar G (2017) Influences of LiCF3SO3 and TiO2 nanofiller on ionic conductivity and mechanical properties of PVA: PVdF blend polymer electrolyte. Ionics 23:2707–2714

    Article  CAS  Google Scholar 

  9. Subramania A, Sundaram NK, Kumar GV, Vasudevan T (2006) New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 12:175–178

    Article  CAS  Google Scholar 

  10. Polu AR, Kumar R, Rhee HW (2015) Magnesium ion conducting solid polymer blend electrolyte based on biodegradable polymers and application in solid-state batteries. Ionics 21:125–132

    Article  CAS  Google Scholar 

  11. Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43:1963–1968

    Article  CAS  Google Scholar 

  12. Rajendran S, Sivakumar P (2008) An investigation of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications. Phys B Condens Matter 403:509–516

    Article  CAS  Google Scholar 

  13. Subramania A, Sundaram NK, Kumar GV (2006) Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications. J Power Sources 153:177–182

    Article  CAS  Google Scholar 

  14. Mohamad AA, Mohamed NS, Yahya MZA, Othman R, Ramesh S, Alias Y, Arof AK (2003) Ionic conductivity studies of poly (vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells. Solid State Ionics 156:171–177

    Article  CAS  Google Scholar 

  15. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  16. Yuan HK, Ren J, Ma XH, Xu ZL (2011) Dehydration of ethyl acetate aqueous solution by pervaporation using PVA/PAN hollow fiber composite membrane. Desalination 280:252–258

    Article  CAS  Google Scholar 

  17. Kim DH, Na SK, Park JS, Yoon KJ, Ihm DW (2002) Studies on the preparation of hydrolyzed starch-g-PAN (HSPAN)/PVA blend films––effect of the reaction with epichlorohydrin. Eur Polym J 38:1199–1204

    Article  CAS  Google Scholar 

  18. Ma XH, Xu ZL, Liu Y, Sun D (2010) Preparation and characterization of PFSA–PVA–SiO 2/PVA/PAN difunctional hollow fiber composite membranes. J Membr Sci 360:315–322

    Article  CAS  Google Scholar 

  19. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2015) Proton-conducting polymer electrolyte based on PVA-PAN blend doped with ammonium thiocyanate. Ionics 21:1017–1029

    Article  CAS  Google Scholar 

  20. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Vijaya N, Kingslin Mary Genova F, Sanjeeviraja C (2013) Structural and AC impedance analysis of blend polymer electrolyte based on PVA and PAN. Int J Sci Res. https://doi.org/10.15373/22778179

  21. Sivadevi S, Selvasekarap S, Karthikeyan S, Vijaya N, Kingslin F, Genova M et al (2013) Proton-conducting polymer electrolyte based on PVA-PAN blend polymer Doped with NH4NO3. Int J Electroactive Mater 1:64–70

    Google Scholar 

  22. Genova FKM, Selvasekarapandian S, Karthikeyan S, Vijaya N, Pradeepa R, Sivadevi S (2015) Study on blend polymer (PVA-PAN) doped with lithium bromide. Polymer Science Series A 57:851–862

    Article  CAS  Google Scholar 

  23. Francis KMG, Subramanian S, Shunmugavel K, Naranappa V, Pandian SSM, Nadar SC (2016) Lithium ion-conducting blend polymer electrolyte based on PVA–PAN doped with lithium nitrate. Polym-Plast Technol Eng 55:25–35

    Article  CAS  Google Scholar 

  24. Kumar GG, Munichandraiah N (2001) Solid-state rechargeable magnesium cell with poly (vinylidenefluoride)–magnesium triflate gel polymer electrolyte. J Power Sources 102:46–54

    Article  CAS  Google Scholar 

  25. Kumar GG, Munichandraiah N (2002) Poly (methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta 47:1013–1022

    Article  CAS  Google Scholar 

  26. Osman Z, Zainol NH, Samin SM, Chong WG, Isa KM, Othman L et al (2014) Electrochemical impedance spectroscopy studies of magnesium-based polymethylmethacrylate gel polymer electroytes. Electrochimica Acta 131:148–153

    Article  CAS  Google Scholar 

  27. Kim JH, Lee YM (2001) Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. J Membr Sci 193(2):209–225

    Article  CAS  Google Scholar 

  28. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  29. Aji MP, Masturi M, Bijaksana S, Khairurrijal K, Abdullah M (2012) A general formula for ion concentration-dependent electrical conductivities in polymer electrolytes. Am J Appl Sci 9(6):946–954

    Article  CAS  Google Scholar 

  30. Ravi M, Song S, Wang J, Wang T, Nadimicherla R (2016) Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J Mater Sci Mater Electron 27:1370–1377

    Article  CAS  Google Scholar 

  31. Reddy MJ, Chu PP (2002) Effect of Mg 2+ on PEO morphology and conductivity. Solid State Ionics 149(1):115–123

    Article  Google Scholar 

  32. Fattoum A, Arous M, Pedicini R, Carbone A, Charnay C (2015) Conductivity and dielectric relaxation in crosslinked PVA by oxalic and citric acids. Polymer Science Series A 57:321–329

    Article  CAS  Google Scholar 

  33. Pandey GP, Agrawal RC, Hashmi J (2011) Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. Solid State Electrochem 15:2253–2264

    Article  CAS  Google Scholar 

  34. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly (vinyl alcohol)-based solid polymer electrolytes. J Power Sources 124(1):225–230

    Article  CAS  Google Scholar 

  35. Abdelrazek EM, Elashmawi IS, Labeeb S (2010) Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Phys B Condens Matter 405:2021–2027

    Article  CAS  Google Scholar 

  36. Pu H, Huang P (2006) Studies on transparent and solid proton conductors based on NH 4 H 2 PO 4 doped poly (vinyl alcohol). Mater Lett 60:1724–1727

    Article  CAS  Google Scholar 

  37. Coleman MM, Petcavich RJ (1978) Fourier transform infrared studies on the thermal degradation of polyacrylonitrile. J Polym Sci B Polym Phys 16:821–832

    Article  CAS  Google Scholar 

  38. Wahab A, Mahiuddin S (2008) Density, ultrasonic velocity, electrical conductivity, viscosity, and Raman spectra of methanolic Mg (ClO4) 2, Mg (NO3) 2, and Mg (OAc) 2 solutions. J Chem Eng Data 54(2):436–443

    Article  Google Scholar 

  39. Wahab A, Mahiuddin S, Hefter G, Kunz W, Minofar B, Jungwirth P (2005) Ultrasonic velocities, densities, viscosities, electrical conductivities, Raman spectra, and molecular dynamics simulations of aqueous solutions of Mg (OAc) 2 and Mg (NO3) 2: Hofmeister effects and ion pair formation. J Phys Chem B 109(50):24108–24120

    Article  CAS  PubMed Central  Google Scholar 

  40. Béléké AB, Mizuhata M, Kajinami A, Deki S (2003) Diffuse reflectance FT-IR spectroscopic study of interactions of α-Al 2 O 3/molten alkali nitrate coexisting systems. J Colloid Interface Sci 268:413–424

    Article  Google Scholar 

  41. Su'ait MS, Ahmad A, Badri KH, Mohamed NS, Rahman MYA, Ricardo CA, Scardi P (2014) The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. Int J Hydrog Energy 39:3005–3017

    Article  CAS  Google Scholar 

  42. Reddy MJ, Chu PP (2002) Ion pair formation and its effect in PEO: Mg solid polymer electrolyte system. J Power Sources 109:340–346

    Article  Google Scholar 

  43. Polu AR, Kumar R (2013) Preparation and characterization of pva based solid polymer electrolytes for electrochemical cell applications. Chin J Polym Sci 31:641–648

    Article  CAS  Google Scholar 

  44. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochim Acta 142:359–370

    Article  CAS  Google Scholar 

  45. Boukamp BA (1986) A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20(1):31–44

    Article  CAS  Google Scholar 

  46. Boukamp BA (1986) A package for impedance/admittance data analysis. Solid State Ionics 18:136–140

    Article  Google Scholar 

  47. Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Baskaran R, Bhuvaneswari MS, Angelo PC (2006) Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 42(10):2672–2677

    Article  CAS  Google Scholar 

  48. Miyamoto T, Shibayama K (1973) Free-volume model for ionic conductivity in polymers. J Appl Phys 44(12):5372–5376

    Article  CAS  Google Scholar 

  49. MacCallum JR, Vincent CA (eds.) (1989) Polymer electrolyte reviews vol. 2. Springer Science & Business Media, Berlin

  50. Teeters D, Neuman RG, Tate BD (1996) The concentration behavior of lithium triflate at the surface of polymer electrolyte materials. Solid State Ionics 85(1–4):239–245

    Article  CAS  Google Scholar 

  51. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Article  CAS  Google Scholar 

  52. Kumar Y, Hashmi SA, Pandey GP (2011) Ionic liquid mediated magnesium ion conduction in poly (ethylene oxide) based polymer electrolyte. Electrochim Acta 56(11):3864–3873

    Article  CAS  Google Scholar 

  53. Kumar GG, Munichandraiah N (2002) Poly (methylmethacrylate)—magnesium triflate gel polymer electrolyte for solid state magnesium battery application. Electrochim Acta 47(7):1013–1022

    Article  CAS  Google Scholar 

  54. Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. J Power Sources 187(2):627–634

    Article  CAS  Google Scholar 

  55. TianKhoon L, Ataollahi N, Hassan NH, Ahmad A (2016) Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20(1):203–213

    Article  CAS  Google Scholar 

  56. Pandey GP, Agrawal RC, Hashmi SA (2011) Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application. J Phys Chem Solids 72(12):1408–1413

    Article  CAS  Google Scholar 

  57. Rosdi A, Zainol NH, Osman Z (2016) In: AIP Conference Proceedings, vol. 1711 no. 1, AIP Publishing, p 050003

  58. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Mangalam R, Premalatha M, Monisha S (2017) Mg-ion conducting blend polymer electrolyte based on poly (vinyl alcohol)-poly (acrylonitrile) with magnesium perchlorate. Solid State Ionics 308:90–100

    Article  CAS  Google Scholar 

  59. Manjuladevi R, Thamilselvan M, Selvasekarapandian S, Selvin PC, Mangalam R, Monisha S (2017) Preparation and characterization of blend polymer electrolyte film based on poly (vinyl alcohol)-poly (acrylonitrile)/MgCl2 for energy storage devices. Ionics. https://doi.org/10.1007/s11581-017-2273-9

    Article  Google Scholar 

  60. Reddy CVS, Sharma AK, Rao VN (2003) Conductivity and discharge characteristics of polyblend (PVP+ PVA+ KIO 3) electrolyte. J Power Sources 114(2):338–345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thamilselvan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjuladevi, R., Selvasekarapandian, S., Thamilselvan, M. et al. A study on blend polymer electrolyte based on poly(vinyl alcohol)-poly (acrylonitrile) with magnesium nitrate for magnesium battery. Ionics 24, 3493–3506 (2018). https://doi.org/10.1007/s11581-018-2500-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2500-z

Keywords

Navigation