Skip to main content

Advertisement

Log in

Red phosphorus encapsulated in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Red phosphorus (RP) is considered to be one of the promising anode materials for lithium-ion batteries (LIBs) on account of its high theoretical capacity (2596 mAh g−1), abundant resources, and environmental friendliness. However, the intrinsic insulating nature and large volume change during lithium insertion/extraction process lead to drastic capacity loss upon cycling. Recently, great attention has been devoted to constructing P-based composites via mixing with carbon materials. Here, a novel P/C composite, in which red P nanoparticles were homogeneously distributed in cigarette filter-derived porous carbon (CPC), was fabricated by vaporization-condensation method. Due to the unique characteristics of porous carbon, including high specific area, good conductivity, and rich internal porous structure, CPC obtained by means of heat treatment that serves as conductive matrix to load red P could be of great benefits, which can not only improve the overall electrical conductivity but also mitigate the volume expansion issues. As a result, the RP/CPC composite as an anode material for LIBs delivers a good cycling stability (500 mAh g−1 at 100 mA g−1 with a high Coulombic efficiency above 99% after 50 cycles) and rate capability (355 mAh g−1 even at 1000 mA g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Article  PubMed  Google Scholar 

  2. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  PubMed  Google Scholar 

  3. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  PubMed  Google Scholar 

  4. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21(27):9938–9954

    Article  CAS  Google Scholar 

  5. Feng X, Zou H, Xiang H, Guo X, Zhou T, Wu Y, Xu W, Yan P, Wang C, Zhang J-G, Yu Y (2016) Ultrathin Li4Ti5O12 nanosheets as anode materials for lithium and sodium storage. ACS Appl Mater Interfaces 8(26):16718–16726

    Article  CAS  PubMed  Google Scholar 

  6. Zou H, Liang X, Feng X, Xiang H (2016) Chromium-modified Li4Ti5O12 with a synergistic effect of bulk doping, surface coating, and size reducing. ACS Appl Mater Interfaces 8(33):21407–21416

    Article  CAS  PubMed  Google Scholar 

  7. Zou HL, Xiang HF, Liang X, Feng XY, Cheng S, Jin Y, Chen CH (2017) Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J Alloys Compd 701:99–106

    Article  CAS  Google Scholar 

  8. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1):31–35

    Article  CAS  PubMed  Google Scholar 

  9. Xiang H, Zhang K, Ji G, Lee JY, Zou C, Chen X, Wu J (2011) Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49(5):1787–1796

    Article  CAS  Google Scholar 

  10. Lian P, Wang J, Cai D, Liu G, Wang Y, Wang H (2014) Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries. J Alloys Compd 604:188–195

    Article  CAS  Google Scholar 

  11. Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3(1):128–133

    Article  CAS  Google Scholar 

  12. Xue D-J, Xin S, Yan Y, Jiang K-C, Yin Y-X, Guo Y-G, Wan L-J (2012) Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J Am Chem Soc 134(5):2512–2515

    Article  CAS  PubMed  Google Scholar 

  13. Yoon S, Park C-M, Sohn H-J (2008) Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 11(4):A42–A45

    Article  CAS  Google Scholar 

  14. Lian P, Wang J, Cai D, Ding L, Jia Q, Wang H (2014) Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochim Acta 116:103–110

    Article  CAS  Google Scholar 

  15. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H (2010) Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56(2):834–840

    Article  CAS  Google Scholar 

  16. Wu J, Song Y, Zhou R, Chen S, Zuo L, Hou H, Wang L (2015) Zn-Fe-ZIF-derived porous ZnFe2O4/C@NCNT nanocomposites as anodes for lithium-ion batteries. J Mater Chem A 3(15):7793–7798

    Article  CAS  Google Scholar 

  17. Wang L, Zheng Y, Wang X, Chen S, Xu F, Zuo L, Wu J, Sun L, Li Z, Hou H, Song Y (2014) Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 6(10):7117–7125

    Article  CAS  PubMed  Google Scholar 

  18. Balogun M-S, Yu M, Li C, Zhai T, Liu Y, Lu X, Tong Y (2014) Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J Mater Chem A 2(28):10825–10829

    Article  CAS  Google Scholar 

  19. Zhang K, Wang H, He X, Liu Z, Wang L, Gu L, Xu H, Han P, Dong S, Zhang C, Yao J, Cui G, Chen L (2011) A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. J Mater Chem 21(32):11916–11922

    Article  CAS  Google Scholar 

  20. Wang X, Kim H-M, Xiao Y, Sun Y-K (2016) Nanostructured metal phosphide-based materials for electrochemical energy storage. J Mater Chem A 4(39):14915–14931

    Article  CAS  Google Scholar 

  21. Ruan B, Wang J, Shi D, Xu Y, Chou S, Liu H, Wang J (2015) A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem A 3(37):19011–19017

    Article  CAS  Google Scholar 

  22. Qian J, Qiao D, Ai X, Cao Y, Yang H (2012) Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem Commun 48(71):8931–8933

    Article  CAS  Google Scholar 

  23. Song J, Yu Z, Gordin ML, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X, Manivannan A, Wang D (2014) Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett 14(11):6329–6335

    Article  CAS  PubMed  Google Scholar 

  24. Li W, Yang Z, Li M, Jiang Y, Wei X, Zhong X, Gu L, Yu Y (2016) Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett 16(3):1546–1553

    Article  CAS  PubMed  Google Scholar 

  25. Li W-J, Chou S-L, Wang J-Z, Liu H-K, Dou S-X (2013) Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett 13(11):5480–5484

    Article  CAS  PubMed  Google Scholar 

  26. Sun J, Zheng G, Lee H-W, Liu N, Wang H, Yao H, Yang W, Cui Y (2014) Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett 14(8):4573–4580

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Zhou G, Liu Z, Ma X, Chen J, Zhang Z, Ma X, Li F, Cheng H-M, Ren W (2016) Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv Mater 28(3):510–517

    Article  CAS  PubMed  Google Scholar 

  28. Sun L-Q, Li M-J, Sun K, Yu S-H, Wang R-S, Xie H-M (2012) Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J Phys Chem C 116(28):14772–14779

    Article  CAS  Google Scholar 

  29. Li W, Yang Z, Jiang Y, Yu Z, Gu L, Yu Y (2014) Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon 78:455–462

    Article  CAS  Google Scholar 

  30. Park C-M, Sohn H-J (2007) Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater 19(18):2465–2468

    Article  CAS  Google Scholar 

  31. Stan MC, Zamory Jv PS, Nilges T, Winter M (2013) Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries. J Mater Chem A 1(17):5293–5300

    Article  CAS  Google Scholar 

  32. Yuan D, Cheng J, Qu G, Li X, Ni W, Wang B, Liu H (2016) Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J Power Sources 301:131–137

    Article  CAS  Google Scholar 

  33. Li J, Wang L, Ren Y, Zhang Y, Wang Y, Hu A, He X (2015) Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries. Ionics 22(2):167–172

    Article  CAS  Google Scholar 

  34. Kim Y, Park Y, Choi A, Choi N-S, Kim J, Lee J, Ryu JH, Oh SM, Lee KT (2013) An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv Mater 25(22):3045–3049

    Article  CAS  PubMed  Google Scholar 

  35. Yu Z, Song J, Gordin ML, Yi R, Tang D, Wang D (2015) Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability. Adv. Sci. 2(1–2):1400020

    Article  Google Scholar 

  36. Marino C, Debenedetti A, Fraisse B, Favier F, Monconduit L (2011) Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem Commun 13(4):346–349

    Article  CAS  Google Scholar 

  37. Li J, Wang L, He X, Wang J (2016) Effect of pore size distribution of carbon matrix on the performance of phosphorus@carbon material as anode for lithium-ion batteries. ACS Sustain Chem Eng 4(8):4217–4223

    Article  CAS  Google Scholar 

  38. Polarz S, Smarsly B, Schattka JH (2002) Hierarchical porous carbon structures from cellulose acetate fibers. Chem Mater 14(7):2940–2945

    Article  CAS  Google Scholar 

  39. Soltani SM, Yazdi SK, Hosseini S (2014) Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters. Appl Nanosci 4(5):551–569

    Article  Google Scholar 

  40. Novotny TE, Hardin SN, Hovda LR, Novotny DJ, McLean MK, Khan S (2011) Tobacco and cigarette butt consumption in humans and animals. Tob Control 20(Suppl 1):i17–i20

    Article  PubMed  Google Scholar 

  41. Sun H, La P, Yang R, Zhu Z, Liang W, Yang B, Li A, Deng W (2017) Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO2 and volatile iodine. J Hazard Mater 321:210–217

    Article  CAS  PubMed  Google Scholar 

  42. Yazdi SK, Soltani SM, Hosseini S (2012) An investigation into the optimum carbonization conditions for the production of porous carbon from a solid waste. Adv Mater Res 587:88–92

    Article  CAS  Google Scholar 

  43. Lee M, Kim G-P, Song HD, Park S, Yi J (2014) Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology 25(34):345601

    Article  PubMed  Google Scholar 

  44. Ali Z, Tahir M, Cao C, Mahmood A, Mahmood N, Butt FK, Tanveer M, Shakir I, Rizwan M, Idrees F, Aslam I, Zou J-J (2016) Solid waste for energy storage material as electrode of supercapacitors. Mater Lett 181:191–195

    Article  CAS  Google Scholar 

  45. Lu P, Sun Y, Xiang H, Liang X, Yu Y (2017) 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater:1702434

    Article  Google Scholar 

  46. Wang Y, Su F, Wood CD, Lee JY, Zhao XS (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 47(7):2294–2300

    Article  CAS  Google Scholar 

  47. Puls J, Wilson SA, Hölter D (2010) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19(1):152–165

    Article  Google Scholar 

  48. Zaug JM, Soper AK, Clark SM (2008) Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks. Nat Mater 7(11):890–899

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, He X, Li J, Sun W, Gao J, Guo J, Jiang C (2012) Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew Chem 51(36):9034–9037

    Article  CAS  Google Scholar 

  50. Wu Z-S, Ren W, Xu L, Li F, Chen H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  CAS  PubMed  Google Scholar 

  51. Puziy AM, Poddubnaya OI, Martínez-Alonso A, Suárez-García F, Tascón JMD (2005) Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43(14):2857–2868

    Article  CAS  Google Scholar 

  52. Puziy AM, Poddubnaya OI, Socha RP, Gurgul J, Wisniewski M (2008) XPS and NMR studies of phosphoric acid activated carbons. Carbon 46(15):2113–2123

    Article  CAS  Google Scholar 

  53. Li W-J, Chou S-L, Wang J-Z, Liu H-K, Dou S-X (2016) Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P–C). J Mater Chem A 4(2):505–511

    Article  CAS  Google Scholar 

  54. Wang Y, Tian L, Yao Z, Li F, Li S, Ye S (2015) Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries. Electrochim Acta 163:71–76

    Article  CAS  Google Scholar 

  55. Chen A, Li Y, Yu Y, Li Y, Zhang L, Lv H, Liu L (2015) Mesoporous carbonaceous materials prepared from used cigarette filters for efficient phenol adsorption and CO2 capture. RSC Adv 5(130):107299–107306

    Article  CAS  Google Scholar 

  56. Marino C, Boulet L, Gaveau P, Fraisse B, Monconduit L (2012) Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism. J Mater Chem 22(42):22713–22720

    Article  CAS  Google Scholar 

  57. Zhu Y, Wen Y, Fan X, Gao T, Han F, Luo C, Liou S-C, Wang C (2015) Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 9(3):3254–3264

    Article  CAS  PubMed  Google Scholar 

  58. Smajic J, Alazmi A, Patole SP, Costa PMFJ (2017) Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes. RSC Adv 7(63):39997–40004

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21406098), the Natural Science Foundation of Yunnan Province (No. 2016FB018), and the Project of Youth Academic and Technology talents of Yunnan Province (No. 2015HB022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peichao Lian or Yi Mei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lian, P., Wang, B. et al. Red phosphorus encapsulated in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries. Ionics 24, 3393–3403 (2018). https://doi.org/10.1007/s11581-018-2487-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2487-5

Keywords

Navigation