Skip to main content

Advertisement

Log in

Core-shell structured Li[(Ni0.9Co0.05Al0.05)0.6(Ni0.4Co0.2Mn0.4)0.4]O2 cathode material for high-energy lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A layer of Ni0.4Co0.2Mn0.4(OH)2 precursor was uniformly deposited on the surface of Ni0.9Co0.05Al0.05(OH)2 particles through a controlled crystallization method. The resulting particles were then homogeneously mixed with LiOH·H2O and subjected to high-temperature calcination at 800 °C under flowing oxygen to yield layered core-shell cathode material Li[(Ni0.9Co0.05Al0.05)0.6(Ni0.4Co0.2Mn0.4)0.4]O2. The elemental compositions in Ni, Co, and Mn of both the core and outer layer of the particles were analyzed by energy dispersive X-ray spectroscopy (EDX), and the data suggested that the core was rich in Ni and the shell in Mn. The shell thickness was estimated to nearly 1 μm, and the average composition of the prepared material was determined as Li(Ni0.7Co0.11Mn0.16Al0.03)O2. In the voltage range of 2.8–4.3 V, the initial discharge capacity and charge-discharge efficiency at 0.1C were estimated to 192.0 mAh g−1 and 91.3% at 25 °C, respectively. After 200 cycles, the retained capacity was calculated as 170.7 mAh g−1 at 1C charge-discharge rate, which was equivalent to 95.8% retention. High-temperature testing at 55 °C evaluated the initial specific discharge capacity at 0.1C to 207.2 mAh g−1, with capacity retention achieving 88.6% after 200 cycles at 1C, showing excellent electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  2. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  3. D'Andrea S, Panero S, Reale P, Scrosati B (2000) Advanced lithium ion battery materials. Ionics 6:127–132

    Article  Google Scholar 

  4. Itou Y, Ukyo Y (2005) Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J Power Sources 146:39–44

    Article  CAS  Google Scholar 

  5. Li D, Peng Z, Guo W, Yuan C, Liu Y, Zhou Y (2007) Synthesis and characterization of LiNi0.9Co0.1O2 for lithium batteries. J Mater Sci 42:9221–9226

    Article  CAS  Google Scholar 

  6. Sethuprakhash V, Basirum WJ (2008) Structural and electrochemical investigation of LiNi0.8Co0.2-xMxO2 (M = Al, Al+Mg, Al+Mg+Fe) synthesized by solid-state method. Ionics 14:501–507

    Article  CAS  Google Scholar 

  7. Du K, Hua C, Tan C, Peng Z, Cao Y, Hu G (2014) A high-powered concentration-gradient Li(Ni0.85Co0.12Mn0.03)O2 cathode material for lithium ion batteries. J Power Sources 263:203–208

    Article  CAS  Google Scholar 

  8. Cheralathan KK, Kang NY (2010) Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation. J Power Sources 195:1486–1494

    Article  CAS  Google Scholar 

  9. Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L, He T, Li J, Chen S (2015) Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7:7702–7708

    Article  CAS  Google Scholar 

  10. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  CAS  Google Scholar 

  11. Majumder SB, Nieto S, Katiyar RS (2006) Synthesis and electrochemical properties of LiNi0.80(Co0.20-xAlx)O2 (x = 0.0 and 0.05) cathodes for li ion rechargeable batteries. J Power Sources 154:262–267

    Article  CAS  Google Scholar 

  12. Zhou P, Meng H, Zhang Z, Chen C, Lu Y, Cao J, Cheng F, Chen J (2017) Stable layered Ni-rich LiNi0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high-performance cathode materials for lithium-ion batteries. J Mater Chem A 5:2724–2731

    Article  CAS  Google Scholar 

  13. Wang MS, Wang J, Zhang J, Fan LZ (2015) Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 21:27–35

    Article  Google Scholar 

  14. Lee DJ, Scrosati B, Sun YK (2011) Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C. J Power Sources 196:7742–7746

    Article  CAS  Google Scholar 

  15. Liang L, Hu G, Jiang F, Cao Y (2016) Electrochemical behaviours of SiO2-coated LiNi0.8Co0.1Mn0.1O2 cathode materials by a novel modification method. J Alloys Comp 657:570–581

    Article  CAS  Google Scholar 

  16. Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27

    Article  CAS  Google Scholar 

  17. Xiong XH, Wang ZX, Yan GC, Guo HJ, Li XH (2014) Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. J Power Sources 245:183–193

    Article  CAS  Google Scholar 

  18. Xiong XH, Wang ZX, Guo HJ, Zhang Q, Li XH (2013) Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60°C. J Mater Chem A1:1284–1288

    Article  Google Scholar 

  19. Sun YK, Kim DH, Yoon CS, Myung ST, Prakash J, Amine K (2010) A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries. Adv Funct Mater 20:485–491

    Article  Google Scholar 

  20. Sun YK, Myung ST, Shin HS, Bae YC, Yoon CS (2006) Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries. J Phys Chem B 110:6810–6815

    Article  CAS  Google Scholar 

  21. Hou P, Wang X, Wang D, Song D, Shi X, Zhang L, Guo J, Zhang J (2014) A novel core-concentration gradient-shelled LiNi0.5Co0.2Mn0.3O2 as high-performance cathode for lithium-ion batteries. RSC Adv 4:15923–15929

    Article  CAS  Google Scholar 

  22. Ma M, Chernova NA, Toby BH, Zavalij PY, Whittingham MS (2007) Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2. J Power Sources 165:517–534

    Article  CAS  Google Scholar 

  23. Lee MH, Kang YJ, Myung ST, Sun YK (2004) Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim Acta 50:939–948

    Article  CAS  Google Scholar 

  24. Liang L, Du K, Peng Z, Cao Y, Duan J, Jiang J, Hu G (2014) Co–precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochim Acta 130:82–89

    Article  CAS  Google Scholar 

  25. Xiang M, Tao W, Wu J, Wang Y, Liu H (2016) Synthesis and electrochemical performance of spherical LiNi0.8Co0.15Ti0.05O2 cathode materials with high tap density. Ionics 22:1003–1009

    Article  CAS  Google Scholar 

  26. Cho SW, Kim GO, Ju JH, Ryu KS (2012) X-ray absorption spectroscopy studies of the Ni ion of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with a core-shell structure and LiNi0.8Co0.15Al0.05O2 as cathode materials. Mater Res Bull 47:2830–2833

    Article  CAS  Google Scholar 

  27. Kim KJ, Jo YN, Lee WJ, Subburaj T, Prasanna K, Lee CW (2014) Effects of inorganic salts on the morphological, structural, and electrochemical properties of prepared nickel-rich Li[Ni0.6Co0.2Mn0.2]O2. J Power Sources 268:349–355

    Article  CAS  Google Scholar 

  28. Sun YK, Chen Z, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K (2012) Nanostructured high-energy cathode materials for advanced lithium batteries. Nat Mater 11:942–947

    Article  CAS  Google Scholar 

  29. Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) Origin of deterioration for LiNiO2 cathode material during storage in air. Electrochem Solid-State Lett 7:A190–A193

    Article  CAS  Google Scholar 

  30. Cho DH, Jo CH, Cho W, Kim YJ, Yashiro H, Sun YK, Myung ST (2014) Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J Electrochem Soc 161:A920–A926

    Article  CAS  Google Scholar 

  31. Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–323

    Article  CAS  Google Scholar 

  32. Huang ZL, Gao J, He XM, Li JJ, Jiang CY (2012) Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors. J Power Sources 202:284–290

    Article  CAS  Google Scholar 

  33. Wu XM, Chen S, Ma MY, Liu JB (2011) Synthesis of Co-coated lithium manganese oxide and its characterization as cathode for lithium ion battery. Ionics 17:35–39

    Article  Google Scholar 

  34. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I (2009) Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics 180:222–225

    Article  CAS  Google Scholar 

  35. Tang SB, Lai MO, Lu L (2008) Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques. Mater Chem Phys 111:149–153

    Article  CAS  Google Scholar 

  36. Du K, Huang J, Cao Y, Peng Z, Hu G (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries. J Alloys Comp 574:377–382

    Article  CAS  Google Scholar 

  37. Chen CH, Liu J, Amine K (2001) Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries. J Power Sources 96:321–328

    Article  CAS  Google Scholar 

  38. Shenouda AY, Liu HK (2010) Preparation, characterization, and electrochemical performance of Li2CuSnO4 and Li2CuSnSiO6 electrodes for lithium batteries. J Electrochem Soc 157:A1183–A1187

    Article  CAS  Google Scholar 

  39. Jiang T, Pan WC, Wang J, Bie XF, Du F, Wei YJ (2010) Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method. Electrochim Acta 55:3864–3869

    Article  CAS  Google Scholar 

  40. Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K (2002) Layered Li(Ni0.5−xMn0.5−xM2x)O2(M=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. J Power Sources 112:41–48

    Article  CAS  Google Scholar 

  41. Jouanneau S, MacNeil DD, Lu Z, Beattie SD, Murphy G, Dahn JR (2003) Morphology and safety of Li[NixCo1−2xMnx]O2 (0⩽ x ⩽1 / 2). J Electrochem Soc 150:A1299–A1304

    Article  CAS  Google Scholar 

  42. Ohzuku T, Yanagawa T, Kouguchi M, Ueda A (1997) Innovative insertion material of LiAl1/4Ni3/4O2 (R(3)over-bar-m) for lithium-ion (shuttlecock) batteries. J Power Sources 68:131–134

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51602352), Fundamental Research Funds for the Central Universities (2012QNZT018), and China Postdoctoral Science Foundation (2012M521546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Luo, H., Du, K. et al. Core-shell structured Li[(Ni0.9Co0.05Al0.05)0.6(Ni0.4Co0.2Mn0.4)0.4]O2 cathode material for high-energy lithium ion batteries. Ionics 24, 1293–1304 (2018). https://doi.org/10.1007/s11581-017-2311-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2311-7

Keywords

Navigation