Skip to main content

Advertisement

Log in

Transport phenomena in superionic Na х Cu2 − х S (х = 0.05; 0.1; 0.15; 0.2) compounds

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electronic and ionic conductivity, the electronic and ionic Seebeck coefficients, and the thermal conductivity of Na x Cu2 − x S (x = 0.05, 0.1, 0.15, 0.2) compounds were measured in the temperature range of 20–450 °С. The total cationic conductivity of Na0.2Cu1.8S is about 2 S/cm at 400 °С (the activation energy ≈ 0.21 eV). Over the studied compounds, the composition Na0.2Cu1.8S has the highest electronic conductivity (500–800 S/cm) in the temperature range from 20 to 300 °С, and the highest electronic Seebeck coefficient (about 0.2 mV/K) in the same temperature range is observed for Na0.15Cu1.85S composition; the electronic Seebeck coefficient increases abruptly above 300 °С for all compounds. The thermal conductivity of superionic Na0.2Cu1.8S is low, which causes high values of the dimensionless thermoelectric figure of merit ZT from 0.4 to 1 at temperatures from 150 to 340 °С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chakrabarti DJ, Laughlin DE (1983) The Cu-S (copper-sulfur) system. J Phase Equilibria 4(3):254–271. https://doi.org/10.1007/BF02868665

    Google Scholar 

  2. Madelung O, Rössler U, Schulz M (1998) Group III Condensed Matter. In: Springer Materials Series Landolt- Börnstein, Non-tetrahedrally Bonded Elements and Binary Compounds I, Springer, Berlin, 41C, pp 1-2

  3. Kalanur SS, Chae SY, Joo OS (2013) Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochim Acta 103:91–95

    Article  CAS  Google Scholar 

  4. Shuai X, Shen W, Hou Z, Ke S, Xu C, Jiang C (2014) A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell. Nanoscale Res Lett 9:513. https://doi.org/10.1186/1556-276X-9-513

    Article  Google Scholar 

  5. Tamura T, Hasegawa T, Terabe K, Nakayama T, Sakamoto T, Sunamura H, Kawaura H, Hosaka S, Aono M (2007) Material dependence of switching speed of atomic switches made from silver sulfide and from copper sulfide. J Phys Conf Ser 61:1157–1161

    Article  CAS  Google Scholar 

  6. Wu Y (2008) Synthesis and photovoltaic application of coper (I) sulfide nanocrystals. Published by Lawrence Berkeley National Laboratory. http://www.escholarship.org/uc/item/2rv992xd. Accessed 22 December 2008

  7. Capezzuto F, Ciampa F, Carotenuto G, Meo M, Milella E, Nicolais F (2010) A smart multifunctional polymer nanocomposites layer for the estimation of low-velocity impact damage in composite structures. Compos Struct 92:1913–1919. https://doi.org/10.1016/j.compstruct.2010.01.003

    Article  Google Scholar 

  8. Jache B, Mogwitz B, Klein F, Adelhelm P (2014) Copper sulfides for rechargeable lithium batteries: linking cycling stability to electrolyte composition. J Power Sources 247:703–711. https://doi.org/10.1016/j.jpowsour.2013.08.136

    Article  CAS  Google Scholar 

  9. Muradov MB, Nuriev MA, Eivazova GM (2007) Sensitivity of composites based on gelatin and nanoparticles Cu2S and CdS to vapors of some organic compounds. Surf Eng Appl Electrochem 43:512–515

    Article  Google Scholar 

  10. Akkad FE, Mansour B, Hendeya T (1981) Electrical and thermoelectric properties of Cu2Se and Cu2S. Mater Res Bull 16:535–539. https://doi.org/10.1016/0025-5408(81)90119-7

    Article  Google Scholar 

  11. Konev VN, Bikkin KM, Fomenkov SA (1983) TTransport phenomena in superionic Na х Cu2 − х S (х = 0.05; 0.1; 0.15; 0.2) compounds. Inorg Mater (Izvestiya academii nauk USSR. Neorganicheskie materialy) 19:1066–1069. https://doi.org/10.1007/s11581-017-2299-2

  12. Ge ZH, Zhang BP, Chen YX, Yu ZX, Liu Y, Li JF (2011) Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem Comm 47:12697–12699. https://doi.org/10.1039/C1CC16368J

    Article  CAS  Google Scholar 

  13. Qin P, Qian X, Ge ZH, Zheng L, Feng J, Zhao LD (2017) Improvements of thermoelectric properties for p-type Cu1.8S bulk materials via optimizing the mechanical alloying process. Inorg Chem Front 4:1192–1199. https://doi.org/10.1039/C7QI00208D

    Article  CAS  Google Scholar 

  14. Zhao L, Fei FY, Wang J, Wang F, Wang C, Li J, Wang J, Cheng Z, Dou S, Wang X (2017) Improvement of thermoelectric properties and their correlations with electron effective mass in Cu1.98SxSe1−x. Sci Rep 7:40436–40446. https://doi.org/10.1038/srep40436

    Article  CAS  Google Scholar 

  15. Tang YQ, Ge ZH, Feng J (2017) Synthesis and thermoelectric properties of copper sulfides via solution phase methods and spark plasma sintering. CrystEngComm 7:141. https://doi.org/10.3390/cryst7050141

    Google Scholar 

  16. Evans HT (1979) The crystal structures of low chalcocite and djurleite. Z Kristallogr 150:299–320. https://doi.org/10.1524/zkri.1979.150.1-4.299

    Article  CAS  Google Scholar 

  17. Putnis A (1977) Electron diffraction study of phase transformations in copper sulfides. Am Mineral 62:107–114

    CAS  Google Scholar 

  18. Roseboom EH (1966) An investigation of the system Cu-S and some natural copper sulfides between 25 degrees and 700 degrees C. Econ Geol 61:641–672

    Article  CAS  Google Scholar 

  19. Potter RW (1974) Metastable phase relations in the system Cu-S. Geol Soc Am Abstr Programs 6:915–916

    Google Scholar 

  20. Cook WR (1972) Phase changes in Cu2S as a function of temperature. Nat Bur Stan Spec Pub 364:703–711

    Google Scholar 

  21. Djurle S (1958) An X-ray study on the system cu-S. Acta Chem Scand 12:1415–1426

    Article  CAS  Google Scholar 

  22. Sands TD, Washburn J, Gronsky R (1982) High resolution observations of copper vacancy ordering in chalcocite (Cu2S) and the transformation to djurleite (Cu1.97 to 1.94S). Phys Status Solidi (a) 72:551–559. https://doi.org/10.1002/pssa.2210720216

    Article  CAS  Google Scholar 

  23. Will G, Hinze E, Abdelrahman AR (2002) Crystal structure analysis and refinement of digenite, Cu1.8S, in the temperature range 20 to 500 °C under controlled sulfur partial pressure. Eur J Miner 14:591–598. https://doi.org/10.1127/0935-1221/2002/0014-0591

    Article  CAS  Google Scholar 

  24. Potter RW (1977) An electrochemical investigation of the system copper- sulfur. Econ Geol 72:1524–1542. https://doi.org/10.2113/gsecongeo.72.8.1524

    Article  CAS  Google Scholar 

  25. Rivest JB, Fong LK, Jain PK, Toney MF, Alivisatos AP (2011) Size dependence of a temperature-induced solid-solid phase transition in copper (I) sulfide. J Phys Chem Lett 2:2402–2406. https://doi.org/10.1021/jz2010144

    Article  CAS  Google Scholar 

  26. Balapanov MK, Yakshibaev RA, Gafurov IG, Ishembetov RK, Kagarmanov SM (2005) Superionic conductivity and crystal structure of LixCu2-xS alloys. Bull Russ Acad Sci Phys 69:623–626

    Google Scholar 

  27. Balapanov MK, Zinnurov IB, Mukhamedyanov UK (2007) Ionic conduction and chemical diffusion in solid solutions of superionic conductors Cu2X-Me2X (Me = Ag, Li; X = S, Se). Rus J Electrochem 43:585–589

    Article  CAS  Google Scholar 

  28. Balapanov MK (2007) Grain size effect on diffusion processes in superionic phases Cu1.75Se, Li0.25Cu1.75Se, and Li0.25Cu1.75S. Rus J Electrochem 43:590–594

    Article  CAS  Google Scholar 

  29. Balapanov MK, Gafurov IG, Mukhamed’yanov UK, Yakshibaev RA, Ishembetov RK (2004) Ionic conductivity and chemical diffusion in superionic LixCu2-xS (0 ≤ x ≤ 0.25). Phys Status Solidi B 241:114–119

    Article  CAS  Google Scholar 

  30. Ishembetov RK, Balapanov MK, Yulaeva YK (2011) Electronic Peltier effect in LixCu(2-x)-δS. Rus J Electrochem 47:416–419

    Article  CAS  Google Scholar 

  31. Balapanov MK, Ishembetov RK, Kuterbekov KA, Nurakhmetov TN, Urazaeva EK, Yakshibaev RA (2014) Influence of the cation sublattice defectness on the electronic thermoelectric power of LixCu(2-x)-δS(x ≤ 0.25). Inorg Mater 50:930–933

    Article  CAS  Google Scholar 

  32. Balapanov MK, Nadejzdina AF, Yakshibayev RA, Lukmanov DR, Gabitova RY (1999) Ionic conductivity and chemical diffusion in LixCu2-xSe superionic alloys. Ionics 5:20–22

    Article  CAS  Google Scholar 

  33. Ge ZH, Liu X, Feng D, Lin J, He J (2016) High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials. Adv Energy Mater 6:1600607. https://doi.org/10.1002/aenm.201600607

    Article  Google Scholar 

  34. Bertheville B, Low D, Bill H, Kubel F (1997) Ionic conductivity of Na2S single crystals between 295 and 1350 K experimental setup and first results. J Phys Chem Solids 58:1569–1577

    Article  CAS  Google Scholar 

  35. Eithiraj RD, Jaiganesh G, Kalpana G, Rajagopalan M (2007) First-principles study of electronic structure and ground-state properties of alkali-metal sulfides – Li2S, Na2S, K2S and Rb2S. Phys Status Solidi B 244:1337–1346. https://doi.org/10.1002/pssb.200642506

    Article  CAS  Google Scholar 

  36. Zhuravlev YN, Kosobutskii AB, Poplavnoi AS (2005) Energy band genesis from sublattice states in sulfides of alkali metals with an antifluorite lattice. Russ Phys J 48:138–142. https://doi.org/10.1007/s11182-005-0096-z

    Article  CAS  Google Scholar 

  37. Kizilyalli M, Bilgin M, Kizilyalli HM (1990) Solid-state synthesis and X-ray diffraction studies of Na2S. J Solid State Chem 85:283–292. https://doi.org/10.1016/S0022-4596(05)80085-4

    Article  CAS  Google Scholar 

  38. Weppner W, Huggins RA (1978) Electrochemical methods for determining kinetic properties of solids. Annu Rev Mater Sci 8:269–311. https://doi.org/10.1146/annurev.ms.08.080178.001413

    Article  CAS  Google Scholar 

  39. Yokota I (1961) On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J Phys Soc Jpn 16:2213–2223. https://doi.org/10.1143/JPSJ.16.2213

    Article  Google Scholar 

  40. Wagner C (1972) The thermoelectric power of cells with ionic compounds involving ionic and electronic conduction. Progr Sol State Chem 7:1–37

    Article  CAS  Google Scholar 

  41. Yakshibaev RA, Balapanov MK, Konev VN (1986) Ionic conductivity and diffusion in superionic conductor Cu2S. Fiz Tverd Tela (USSR) 28:1566–1568

    CAS  Google Scholar 

  42. Girvin S (1978) Thermoelectric power of superionic conductors. J Solid State Chem 25:65. https://doi.org/10.1016/0022-4596(78)90044-0

    Article  CAS  Google Scholar 

  43. Korzhuev MA (1998) Entropy of crystallization of materials from a “molten” sublattice of superionic conductors. Phys Solid State 40:204–205

    Article  Google Scholar 

  44. Zheng LJ, Zhang BP, Li HZ, Pei J, Yu JИ (2017) CuxS superionic compounds: electronic structure and thermoelectric performance enhancement. J Alloys Compd. 722:17–24. https://doi.org/10.1016/j.jallcom.2017.06.078

    Article  CAS  Google Scholar 

  45. Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectric. Nat Mater 11:422–425. https://doi.org/10.1038/nmat3273

    Article  Google Scholar 

  46. Qiu P, Shi X, Chen L (2016) Cu-based thermoelectric materials. Energy Stor Mater 3:85–97. https://doi.org/10.1016/j.ensm.2016.01.009

    Article  Google Scholar 

  47. Xiao XX, Xie WJ, Tang XF, Zhang QJ (2011) Phase transition and high temperature thermoelectric properties of copper selenide Cu2−xSe (0 ≤ x ≤ 0.25). Chin Phys B 20:087201. https://doi.org/10.1088/1674-1056/20/8/087201

    Article  Google Scholar 

  48. Brown DR, Day T, Borup KA, Christensen S, Iversen BB, Snyder GJ (2013) Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. APL Mater 1:052107. https://doi.org/10.1063/1.4827595

    Article  Google Scholar 

  49. Liu HL, Shi X, Kirkham M, Wang H, Li Q, Uher C, Zhang WQ, Chen LD (2013) Structure-transformation-induced abnormal thermoelectric properties in semiconductor copper selenide. Mater Lett 93:121–124

    Article  CAS  Google Scholar 

  50. Dennler G, Chmielowski R, Jacob S, Capet F, Roussel P, Zastrow S, Nielsch K, Opahle I, Madsen GKH (2014) Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv Energy Mater 4:1301581. https://doi.org/10.1002/aenm.201301581

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kh. Balapanov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balapanov, M.K., Ishembetov, R.K., Kuterbekov, K.A. et al. Transport phenomena in superionic Na х Cu2 − х S (х = 0.05; 0.1; 0.15; 0.2) compounds. Ionics 24, 1349–1356 (2018). https://doi.org/10.1007/s11581-017-2299-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2299-z

Keywords

Navigation