Skip to main content
Log in

Bi x Ce1 − x PO4 (x = 0.00, 0.02, and 0.08) nanorods: structural, electrical, optical, and electrochemical properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Bi x Ce1 − x PO4 (x = 0.00–0.08) nanorods were synthesized using the solvothermal method at 160 °C. The successful incorporation of Bi3+ dopant ions into the hexagonal structure of CePO4 was verified by XRD, EDX, FTIR, and UV-Vis spectroscopic techniques. The XRD and IR spectroscopy results have demonstrated that low bismuth doping does not alter the CePO4 structure and good nanocrystalline materials are synthesized. The temperature dependence of conductivity, for both the pure and Bi3+-doped samples, obeys the Arrhenius law of conduction. The Bi doping process has been successful in effectively tuning the optical band gap energy and electronic band structure of the cerium phosphate materials. Electrochemical tests showed an improved capacity when increasing the Bi content and a stable cycling performance of the Bi x Ce1 − x PO4 (x = 0.00, 0.02, and 0.08) nanorods, making them interesting for potential further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ho LN, Nishiguchi H, Nagaoka K, Takita Y (2006) Synthesis and characterization of a series of mesoporous nanocrystalline lanthanides phosphate. J Porous Mater 13:237–244

    Article  CAS  Google Scholar 

  2. Zhang YJ, Guan HM (2005) The growth of lanthanum phosphate (rhabdophane) nanofibers via the hydrothermal method. Mater Res Bull 40:1536–1543

    Article  CAS  Google Scholar 

  3. Hikichi Y, Nomura T, Tanimura Y, Sb S (1990) Sintering and properties of monazite-type CeP04. J Am Ceram Soc 73:3594–3596

    Article  CAS  Google Scholar 

  4. Xu L, Guo G, Uy D, O’Neill AE, Weber WH, Rokosz MJ, McCabe RW (2004) Cerium phosphate in automotive exhaust catalyst poisoning. Appl Catal B Environ 50:113–125

    Article  CAS  Google Scholar 

  5. Granados ML, Galisteo FC, Lambrou PS, Mariscal R, Sanz J, Sobrados I, Fierro JLG, Efstathiou AM (2006) Role of P-containing species in phosphated CeO2 in the deterioration of its oxygen storage and release properties. J Catal 239:410–421

    Article  Google Scholar 

  6. Kitamura N, Amezawa K, Tomii Y, Hanada T, Yamamoto N, Omata T, Otsuka Yao-Matsuo Y (2005) Electrical conduction properties of Sr-doped LaPO4 and CePO4 under oxidizing and reducing conditions. J Electrochem Soc 152:A 658–A 663

    Article  CAS  Google Scholar 

  7. Dhaouadi H, Fadhalaoui A, Mdani A, Rzaigui M (2014) Structural and electrical properties of nanostructured cerium phosphate. Ionics 20:857–866

    Article  CAS  Google Scholar 

  8. Fadhalaoui A, Dhaouadi H, Marouani H, Kouki A, Madani A, Rzaigui M (2016) Cr-substitution effect on structural, optical and electrical properties of CrxCe1-xPO4 (x = 0.00, 0.08, 0.10 and 0.20) nanorods. Mater Res Bull 73:153–163

    Article  CAS  Google Scholar 

  9. Norby T, Christiansen N (1995) Proton conduction in Ca- and Sr-substituted LaPO4. Solid State Ionics 77:240–243

    Article  CAS  Google Scholar 

  10. Zhang Y, Wang J, Zhang T (2011) Novel Ca-doped CePO4 supported ruthenium catalyst with superior catalytic performance for aerobic oxidation of alcohols. Chem Commun 47:5307–5309

    Article  CAS  Google Scholar 

  11. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43:4463–4466

    Article  CAS  Google Scholar 

  12. Xiong J, Cheng G, Lu Z, Tang J, Yu X, Chen R (2011) BiOCOOH hierarchical nanostructures: shape-controlled solvothermal synthesis and photocatalytic degradation performances. Cryst Eng Comm 13:2381–2390

    Article  CAS  Google Scholar 

  13. Bessekhouad Y, Mohammedi M, Trari M (2002) Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst. Sol Energy Mater Sol Cells 73:339–350

    Article  CAS  Google Scholar 

  14. Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110:17790–17797

    Article  CAS  Google Scholar 

  15. Li G, Zhang D, Yu JC, Leung MKH (2010) An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide. Environ Sci Technol 44:4276–4281

    Article  CAS  Google Scholar 

  16. Chang TS, Guijia L, Shin CH, Lee YK, Yun SS (2000) Catalytic behavior of BiPO4 in the multicomponent bismuth phosphate system on the propylene ammoxidation. Catal Lett 68:229–234

    Article  CAS  Google Scholar 

  17. Neeraj S, Kijima N, Cheetham AK (2004) Novel red phosphors for solid state lighting; the system Bi x Ln1−x VO4; Eu3+/Sm3+ (Ln=Y, Gd). Solid State Commun 131:65–69

    Article  CAS  Google Scholar 

  18. Wang MQ, Fan XP, Xiong GH (1995) High temperature thermal expansion of alkali halides. J Phys Chem Solids 56:895–900

    Article  CAS  Google Scholar 

  19. Jacobsohn LG, Blair MW, Tornga SC, Brown LO, Bennett BL, Muenchausen RE (2008) Y2O3:Bi nanophosphor: solution combustion synthesis, structure and luminescence. J Appl Phys 104:124303–124310

    Article  Google Scholar 

  20. Mao F, Wu D, Zhou Z, Wang S (2014) Structural and electrochemical properties of LiFe1−3x/2BixPO4/C synthesized by sol–gel. Ionics 20:1665–1669

    Article  CAS  Google Scholar 

  21. Nobre MAL, Lanfredi S (2003) Negative temperature coefficient thermistor based on Bi3 Zn2 Sb3O14 ceramic: an oxide semiconductor at high temperature. Appl Phys Lett 82:2284–2286

    Article  CAS  Google Scholar 

  22. Liqiang M, Xiaocong T, Xu X, Liang C, Lin X (2014) Nanowire electrodes for electrochemical energy storage devices. Chem Rev 114:11828–11862

    Article  Google Scholar 

  23. Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination neutron powder diffraction. Physica B: Cond Mat 192:55–69

    Article  CAS  Google Scholar 

  24. Jianming Z, Weiren Z, Licai L, Jianqing W (2014) Hydrothermal synthesis and luminescence properties of Eu3+ and Sm3+ codoped BiPO4. J Rare Earths 32:5–11

    Article  Google Scholar 

  25. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, California

    Google Scholar 

  26. Ishaque M, Islam MU, Khan MA, Rahman IZ, Genson A, Hampshire S (2010) Structural, electrical and dielectric properties of yttrium substituted nickel ferrites. Phys B Condens Matter 405:1532–1540

    Article  CAS  Google Scholar 

  27. Wu L, Wang Z, Li X et al (2010) Electrochemical performance of Ti4+-doped LiFePO4 synthesized by co-precipitation and post-sintering method. Trans Nonferrous Met Soc China 20:814–818

    Article  CAS  Google Scholar 

  28. Fujishiro Y, Ito H, Sato T, Okuwaki A (1997) Synthesis of monodispersed LaPO4 particles using the hydrothermal reaction of an La(edta) chelate precursor and phosphate ions. J Alloys Compd 252:103–109

  29. Assaaoudi H, Ennaciri A, Rulmon A (2001) Vibrational spectra of hydrated rare earth orthophosphates. Vib Spectrosc 25:81–90

    Article  CAS  Google Scholar 

  30. Colomer MT, Delgado I, Ortiz AL, Farin JC (2014) Microwave-assisted hydrothermal synthesis of single-crystal nanorods of rhabdophane-type Sr-doped LaPO4·nH2O. J Am Ceram Soc 97:750–758

    Article  CAS  Google Scholar 

  31. Abdullah MH, Yussof AN (1997) Frequency dependence of the complex impedances and dielectric behavior of some Mg-Zn ferrites. J Mater Sci 32:5817–5823

    Article  CAS  Google Scholar 

  32. Batoo KM, Kumar S, Lee CG, Alimuddin A (2009) Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr Appl Phys 9:1397–1406

    Article  Google Scholar 

  33. Nobre MAL, Lanfredi S (2001) Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater Lett 47:362–366

    Article  CAS  Google Scholar 

  34. James AR, Srinivas K (1999) Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater Res Bull 34:1301–1310

    Article  CAS  Google Scholar 

  35. Pocharski J, Wieczoreck W (1988) PEO based composite solid electrolyte containing nasicon. Solid State Ionics 28-30:979–982

    Article  Google Scholar 

  36. Anantha PS, Hariharan K (2005) Ac conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Mater Sci Eng B 121:12–19

    Article  Google Scholar 

  37. Funke K (1997) Ion transport in fast ion conductors—spectra and models. Solid State Ionics 94:27–33

    Article  CAS  Google Scholar 

  38. Jonscher AK (1975) The interpretation of non-ideal dielectric admittance and impedance diagrams. Phys Status Solidi A 32:665–676

    Article  CAS  Google Scholar 

  39. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  40. Butcher PN, Morys PL (1973) Exact solution of the AC hopping conductivity problem at low site densities. J Phys C Solid State Phys 6:2147–2157

    Article  Google Scholar 

  41. Gudmundsson JT, Svavarsson HG, Gudjonsson S, Gislason HP (2003) Frequency-dependent conductivity in lithium-diffused and annealed GaAs. Physica B 340:324–328

    Article  Google Scholar 

  42. Funk K (1993) Jump relaxation in solid electrolytes. Prog Solid State Chem 22:111–195

    Article  Google Scholar 

  43. Okutan M, Basaran E, Bakan HI, Yakuphanoglu F (2005) AC conductivity and dielectric properties of Co-doped TiO2. Physica B 364:300–305

    Article  CAS  Google Scholar 

  44. Macedo PB, Moynihan CT, Bose R (1972) The role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171–179

    CAS  Google Scholar 

  45. Ben Rhaiem A, Zouari N, Guidara K, Gargouri M, Daoud A (2005) Electrical properties of trimethyl ammonium monobromodichloromercurate. J Alloys Compd 387:1–5

    Article  CAS  Google Scholar 

  46. Ben Rhaiem A, Hlel F, Guidara K, Gargouri M (2009) Dielectric relaxation and ionic conductivity studies of [N(CH3)4]2Cu0.5Zn0.5Cl4. J Alloys Compds 463:440–445

    Article  Google Scholar 

  47. Abbassi M, Ternane R, Sobrados I, Madani A, Ayadi MT, Sanz J (2014) Synthesis, characterization and oxide conduction in Ba doped apatite-type silicates, Ca2La6Bi2(SiO4)6O2. Mater Chem Phys 147:285–292

    Article  CAS  Google Scholar 

  48. Nobre MAL, Lanfredi S (2001) Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy. J Phys Chem Solids 62:1999–2006

    Article  CAS  Google Scholar 

  49. Migahed MD, Bakr NA, Abdel-Hamid MI, EL-Hannafy O, ElNimr M (1996) Dielectric relaxation and electric modulus behavior in poly(vinyl alcohol)-based composite systems. J Appl Polym Sci 59:655–662

    Article  CAS  Google Scholar 

  50. Fu Z, Yang B, Li L, Dong W, Jia C, Wu W (2003) An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites. J Phys Condensed Matter 15:2867–2873

    Article  CAS  Google Scholar 

  51. Maxwell J (1873) A treatise on electricity and magnetism Oxford University vol. 1. Clarendon Press, Oxford, 328

  52. Wagner KW (1913) Zur Theorie der unvollkommenen Dielektrika. Ann Phys 440:817

  53. Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–124

    Article  CAS  Google Scholar 

  54. Maxwell JC (1973) Electric and magnetism. Oxford University Press, New York, p 828

    Google Scholar 

  55. Peters C (2009) PhD Thesis, Grain-size effects in nanoscaled electrolyte and cathode thin films for solid oxide fuel cells (SOFC). University of Karlsruhe, Germany

  56. Xi Y, Bin Y, Chiang CK, Matsuo M (2007) Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon 45:1302–1309

    Article  CAS  Google Scholar 

  57. Vinoth Rathan S, Govindaraj G (2010) Thermal and electrical relaxation studies in Li(4+x)Ti x Nb1−xP3O12, (0.0 ≤ x ≤ 1.0) phosphate glasses. Solid State Sci 12:730–735

    Article  Google Scholar 

  58. Patange SM, Shirsth SE, Lohar KS, Jadhav KS, Kulkarni N, Jadhav KM (2011) Electrical and switching properties of NiAlxFe2−xO4 ferrites synthesized by chemical method. Phys B Condens Matter 406:663–668

    Article  CAS  Google Scholar 

  59. Melagiriyappa M, Jayanna HS, Chougule BK (2008) Dielectric behavior and ac electrical conductivity study of Sm3+ substituted Mg–Zn ferrites. Mater Chem Phys 112:68–73

    Article  CAS  Google Scholar 

  60. Watawe SC, Bamne UA, Gonbare SP, Tangsali RB (2007) Preparation and dielectric properties of cadmium substituted lithium ferrite using microwave-induced combustion. Mater Chem Phys 103:323–328

    Article  CAS  Google Scholar 

  61. Zhang LW, Man Y, Zhu YF (2011) Replacement on the structure and visible-light induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catal 1:841–848

    Article  CAS  Google Scholar 

  62. Fang YP, Xu AW, Song RQ, Zhang HX, You LP, Yu JC, Liu HQ (2003) Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J Am Chem Soc 125:16025–16034

    Article  CAS  Google Scholar 

  63. Warad AU, Uplane MD, Pawar SI (1985) Effect of Bi3+ doping on the properties of chemically deposited GdS films. Mater Chem Phys 13:91–96

    Article  CAS  Google Scholar 

  64. Hyung J, Lee H, Kang M (2016) Remarkable photoconversion of carbon dioxide into methane using Bi-doped TiO2 nanoparticles prepared by a conventional sol–gel method. Mater Lett 178:316–319

    Article  Google Scholar 

  65. Wu M, Chen W, Lin T, Hsiao K, Lee K, Wu C (2016) Enhanced open-circuit voltage of dye-sensitized solar cells using Bi-doped TiO2 nanofibers as working electrode and scattering layer. Sol Energy 135:22–28

    Article  CAS  Google Scholar 

  66. Yang M, Sui Y, Wang S, Wang X, Wang Y, Lü S, Zhang Z, Liu Z, Lü T, Liu W (2011) Effects of Bi3+ doping on the optical properties of Er3+:Y2O3. J AlloysCompd 509:827–830

    CAS  Google Scholar 

  67. Xue SW, Zu XT, Zhou WL, Deng HX, Xiang X, Zhang L, Deng H (2008) Effects of post-thermal annealing on the optical constants of ZnO thin film. J Alloys Compd 448:21–26

    Article  CAS  Google Scholar 

  68. Serbetçi Z, El-Nasser HM, Yakuphanoglu F (2012) Photoluminescence and refractive index dispersion properties of ZnO nanofibers grown by sol-gel method. Spectrochim Acta Part A 86:405–409

    Article  Google Scholar 

  69. Tripathy SK (2015) Refractive indices of semiconductors from energy gaps. Opt Mater 46:240–246

    Article  CAS  Google Scholar 

  70. Dimitrov V, Sakka S (1996) Electronic oxide polarizability and optical basicity of simple oxides. J Appl Phys 79:1736–1740

    Article  CAS  Google Scholar 

  71. Sen S, Konkel H, Tight SJ, Bland LG, Sharma SR, Taylor RE (1988) Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-Bridgman process. J Crys Growth 86:111–117

    Article  CAS  Google Scholar 

  72. Tianfu H, Chenhao Z, Zehai Q, Jiangshui L, Zhibiao H (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics 23:139–146

  73. Xuefei D, Hailei Z, Yao L, Zijia Z, Andrzej K, Konrad Ś (2017) Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim Acta 228:100–106

    Article  Google Scholar 

  74. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. J Power Sources 192:689–692

    Article  CAS  Google Scholar 

  75. Mengyu Y, Guobin Z, Qiulong W, Xiaocong T, Kangning Z, Qinyou A, Liang Z, Yunlong Z, Chaojiang N, Wenhao R, Liang H, Liqiang M (2016) In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. Nano Energy 22:406–413

    Article  Google Scholar 

  76. Fuwei M, Dongchen W, Zhufa Z, Shumei W (2014) Structural and electrochemical properties of LiFe1−3x/2BixPO4/C synthesized by sol-gel. Ionics 20:1665–1669

    Article  Google Scholar 

  77. Ding N, Xu J, Yao YX, Wegner G, Fang X, Chen CH, Lieberwirth I (2009) Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics 180:222-225

  78. Franger S, Cras FL, Bourbon C, Rouault H (2002) LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance. Electrochem Solid State Lett 5(10): A231–3

  79. Kwon NH, Yin H, Vavrova T, Lim JH-W, Steiner U, Grobety B, Fromm KM (2017) Nanoparticle shapes of LiMnPO4, Li+ diffusion orientation and diffusion coefficients for high volumetric energy Li ion cathodes. J Power Sources 342:231–240

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassouna Dhaouadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadhalaoui, A., Kouass, S. & Dhaouadi, H. Bi x Ce1 − x PO4 (x = 0.00, 0.02, and 0.08) nanorods: structural, electrical, optical, and electrochemical properties. Ionics 24, 429–450 (2018). https://doi.org/10.1007/s11581-017-2222-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2222-7

Keywords

Navigation