Skip to main content
Log in

Effect of Fe doping on structural, magnetic, and electrical properties of non-magnetic and magnetic rare earth-based perovskite chromites La0.5Nd0.5Cr1-x Fe x O3 (0 ≤ x ≤ 1)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The structural, magnetic, and electrical properties of new series La0.5Nd0.5Cr1-x Fe x O3 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) have been reported. All the phases crystallize in the orthorhombic symmetry with Pbnm space group. The unit cell volume of La0.5Nd0.5Cr1-x Fe x O3 increases monotonically with increasing Fe doping. Magnetization studies showed that all our investigated phases (except x = 0.8 and 1.0) exhibit a paramagnetic–anti-ferromagnetic transition at low temperature. The variation in Neel temperature (T N) with increasing x can be explained in terms of magnetic interactions due to Fe doping. Irreversibility between the zero-field-cooled (ZFC) and field-cooled (FC) magnetization is clearly seen close to T N. All the phases show that insulating behavior and the transport properties are dominated by the polaron hopping mechanism with increase in polaron hopping energy with Fe content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Battle PD, Gibb TC, Herod AJ, Kim SH, Munns PH (1995) Investigation of magnetic frustration in A2FeMO6 (A = Ca, Sr, Ba; M = Nb, Ta, Sb) by magnetometry and Mössbauer spectroscopy. J Mater Chem 5:865–870

    Article  Google Scholar 

  2. Kim SH, Battle PD (1995) Structural and electronic properties of the mixed Co/Ru perovskites AA′CoRuO6 (A, A′ = Sr, Ba, La). J Solid State Chem 114:174–183

    Article  CAS  Google Scholar 

  3. Cooke AH, Martin DM, Wells MR (1974) Magnetic interactions in gadolinium orthochromite, GdCrO3. J Phys C Solid State Phys 7:3133–3144

    Article  CAS  Google Scholar 

  4. Goodenough JB, Longo JM, Landolt-Bornstein, Group III (1970) Magnetic and other properties of oxides and related compounds, vol 4. Springer-Verlag, New York, p 126

    Google Scholar 

  5. Hu W, Chen Y, Yuan H, Zhang G, Li G, Pang G, Feng S (2010) Hydrothermal synthesis, characterization and composition-dependent magnetic properties of LaFe1-x Cr x O3 system (0 ≤ x ≤ 1). J Solid State Chem 183:1582–1587

    Article  CAS  Google Scholar 

  6. Bora T, Ravi S (2015) Sign reversal of magnetization and tunable exchange bias field in NdCr1-x Fe x O3 (x = 0.05–0.2). J Magn Magn Mat 386:85–91

    Article  CAS  Google Scholar 

  7. Yuan L, Huang K, Hou C, Feng W, Wang S, Zhou C, Feng S (2014) Hydrothermal synthesis and magnetic properties of REFe0.5Cr0.5O3 (RE = La, Tb, Ho, Er, Yb, Lu and Y) perovskite. New J Chem 38:1168–1172

    Article  CAS  Google Scholar 

  8. Paul Blessington Selvadurai A, Pazhanivelu V, Jagadeeshwaran C, Murugaraj R, Panneer Muthuselvam I, Chou FC (2015) Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3. J Alloy Compd 646:924–931

    Article  CAS  Google Scholar 

  9. Pomiro F, Sanchez R, Cuello G, Maignan A, Martin C, Carbonio RE (2016) Spin reorientation, magnetization reversal, and negative thermal expansion observed in RFe0.5Cr0.5O3 perovskites (R = Lu,Yb,Tm). Phys Rev B 94:134402

    Article  Google Scholar 

  10. Yu Q, Zhou Y, Wang S, Yuan L, Du Y, Lu D, Che G, Che H (2017) Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe1−x Cr x O3 (0.1 ≤ x ≤ 0.9) perovskites. Dalton Trans 46:5930–5937

    Article  Google Scholar 

  11. Azad AK, Mellergard A, Eriksson SG, Ivanov SA, Yunus SM, Lindberg F, Svensson G, Mathieu R (2005) Structural and magnetic properties of LaFe0.5Cr0.5O3 studied by neutron diffraction, electron diffraction and magnetometry. Mater Res Bull 40:1633–1644

    Article  CAS  Google Scholar 

  12. Kanamori J (1959) Superexchange interaction and symmetry properties of electron orbitals. J Phys Chem Solids 10:87–98

    Article  CAS  Google Scholar 

  13. Goodenough JB (1955) Theory of the role of covalence in the perovskite type manganites [La,M(II)]MnO3. Phys Rev 100:564–573

    Article  CAS  Google Scholar 

  14. Kuznetsov MV, Pankhurst QA, Parkinc IP, Morozov YG (2001) Self-propagating high-temperature synthesis of chromium substituted lanthanum orthoferrites LaFe1-x Cr x O3(0 ≤ x ≤ 1). J Mater Chems 11:854–858

    Article  CAS  Google Scholar 

  15. Dahmani A, Taibi M, Nogues M, Aride J, Loudghiri E, Belayachi A (2002) Magnetic properties of the perovskite compoundsYFe1-x Cr x O3(0.5 ≤ x ≤ 1). Mater Chem Phys 77:912–917

    Article  Google Scholar 

  16. Taguchi H (1997) Relationship between crystal structure and electrical properties of Nd(Cr1-x Fe x )O3. J Solid State Chem 131:108–114

    Article  CAS  Google Scholar 

  17. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748, Los Alamos

  18. Bora T, Saravanan P, Ravi S (2013) Antiferromagnetism and the effect of exchange bias in LaCr1−x Fe x O3 (x = 0.40 to 0.60). J Supercond Nov Magn 26:1645–1648 Antiferromagnetic LaFeO3 thin films and their effect on exchange bias

    Article  CAS  Google Scholar 

  19. Seo JW, Fullerton EE, Nolting F, Scholl A, Fompeyrine J, Locquet J-P (2008) Antiferromagnetic LaFeO3 thin films and their effect on exchange bias. J Phys Condens Matter 20:264014–264024

    Article  CAS  Google Scholar 

  20. Singh D, Singh S, Mahajan A, Choudhary N (2014) Effect of substitution of magnetic rare earth Nd at non-magnetic La site on structure and properties of LaSrFeO4. Ceram Int 40:1183–1188

    Article  CAS  Google Scholar 

  21. Singh D, Mahajan A (2015) Effect of A-site cation size on the structural, magnetic, and electricalproperties of La1-x Nd x Mn0.5Cr0.5O3 perovskites. J Alloys Compd 644:172–179

    Article  CAS  Google Scholar 

  22. Singh D, Gupta S, Mahajan A (2016) Structural and composition dependent transport properties of perovskite oxides La0.8R0.2Fe0.5Cr0.5O3 (R = La, Nd, Gd and Dy). Ceram Int 42:11020–11024

    Article  CAS  Google Scholar 

  23. Radaelli PG, Iannone G, Marezio M, Hwang HY, Cheong SW, Jorgensen JD, Argyriou DN (1997) Structural effects on the magnetic and transport properties of perovskite A1-x A′ x MnO3 (x = 0.25, 0.30). Phys Rev B 56:8265–8276

    Article  CAS  Google Scholar 

  24. Kim SM, Yang BJ, Cai Q, Zhou DX, James JW, Yelon BW, Parris EP, Buddhikot D, Malik KS (2005) Structure, magnetic, and transport properties of Ti-substituted La0.7Sr0.3MnO3. Phys Rev B 71:014433 (1-8)

    Article  Google Scholar 

  25. Mott N (1993) Conduction in non-crystalline materials. Clarendon, Oxford, pp 17–23

    Google Scholar 

  26. Laiho R, Lisunov KG, Lahderanta E, Stamov VN, Zakhvalinskii VS (2001) Variable-range hopping conductivity in La1-x Ca x MnO3. J Phys Condens Matter 13:1233–1246

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are also thankful to Dr. Harpreet Singh, Central Research Facility Section, Indian Institute of Technology Ropar, for recording XRD. Thanks are also due to Prof. Ramesh Chandra, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, for recording EDX and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Mahajan, A., Singh, S. et al. Effect of Fe doping on structural, magnetic, and electrical properties of non-magnetic and magnetic rare earth-based perovskite chromites La0.5Nd0.5Cr1-x Fe x O3 (0 ≤ x ≤ 1). Ionics 24, 459–468 (2018). https://doi.org/10.1007/s11581-017-2220-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2220-9

Keywords

Navigation