Skip to main content
Log in

Chemical and physical characterizations of the n = 1 Ruddlesden–Popper phases: Nd2 − y Sr y Ni1 − x Co x O4 ± δ (y = 1 and 0.1 ≤ x ≤ 0.9)

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The structural stability and physical properties of NdSrNi1 − x Co x O4 ± δ (0.1 ≤ x ≤ 0.9) mixed oxides, elaborated by conventional sol–gel process, have been investigated and obtained results show that substitution of nickel by cobalt at x = 0.5 enhances conductivity at room temperature; σ = 17.24 Ω−1 cm−1 coinciding with minimum activation energy (E a = 0.05 eV). Rietveld refinements of X-ray powder diffraction patterns at room temperature indicate that all compositions crystallize in a tetragonal system with I4/mmm space group and exhibit K2NiF4-type structure. Variations of a and c parameters display various behavior with increasing cobalt content. Changes in cell parameters are discussed in terms of crystal field theory. In addition, transition metal oxidation state is investigated on the basis of the Brown bond valence calculation. The deduced Global Instability Index (GII) value decreases when cobalt substance increases, indicating that the structure becomes more stable once cobalt is introduced. Oxygen stoichiometry of these compounds was determined from thermogravimetric analyses (TGA) followed by reduction in 5% H2 in N2 gas. Conductivity of NdSrNi1 − x Co x O4 ± δ (0.1 ≤ x ≤ 0.9) oxides was measured by an ac four-probe method. Oxygen vacancies are the possible ionic charge carriers. Specimens exhibit a semiconducting behavior in the whole range of temperature. The electrical transport mechanism agrees with an adiabatic small polaron hopping (ASPH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hohlwein D, Hoser A, Sonntag R, Prandl W, Schafer W, Kiemel R, Kemmler-Sack S, Hewat AW (1989) Structural changes in superconducting La1.8Sr0.2CuO4 by alloying copper with cobalt. Phys B Condens Matter 156-157:893–896

    Article  CAS  Google Scholar 

  2. Zaghrioui M, Giovannelli F, Poirot N, Brouri D, Laffez I (2004) Anomalies in magnetic susceptibility of nonstoichiometric Nd2NiO4 + δ (δ = 0.049, 0.065, 0.077, 0.234). J Solid State Chem 177:3351–3358

    Article  CAS  Google Scholar 

  3. Matsuura T, Tabuchi J, Mizusaki J, Yamauchi S, Fueki K (1988) Electrical properties of La2−x Sr x CoO4—II: models and analysis of the relationship between cobalt 3d electron state and structural, electrical and magnetic properties. J Phys Chem Solids 49:1409–1418

    Article  CAS  Google Scholar 

  4. Luo L, Shao G, Duan Z (2005) Catalytic oxidation properties and characterization of LaSrCo0.9B′0.1O4 (B′ = Mn, Fe, Ni, Cu) mixed oxides. Turkish J Chem 29:597–605

    CAS  Google Scholar 

  5. Iguchi E, Nakatsugawa H, Futakuchi K (1998) Polaronic conduction in La2 − x Sr x CoO4 (0.25≤x≤1.10) below room temperature. J Solid State Chem 139:176–184

    Article  CAS  Google Scholar 

  6. Ferchaud C, Grenier JC, Zhang-Steenwinkel Y, Van Tuel MMA, Van Berkel FPF, Bassat JM (2011) High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell. J Power Sources 196:1872–1879

    Article  CAS  Google Scholar 

  7. Chauveau F, Mougin J, Mauvy F, Bassat JM, Grenier JC (2011) Development and operation of alternative oxygen electrode materials for hydrogen production by high temperature steam electrolysis. Int J Hydrog Energy 36:7785–7790

    Article  Google Scholar 

  8. Grimaud A, Mauvy F, Bassat JM, Fourcade S, Marrony M, Grenier JC (2012) Hydration and transport properties of the Pr2 − x Sr x NiO4 + δ compounds as H+-SOFC cathodes. J Mater Chem 22:16017–16025

    Article  CAS  Google Scholar 

  9. Patrakeev MV, Naumovich EN, Kharton VV, Yaremchenko AA, Tsipis EV, Nunez P, Frade JR (2005) Oxygen nonstoichiometry and electron-hole transport in La2Ni0.9Co0.1O4+δ. J. Solid State Ionics 176:179–188

    Article  CAS  Google Scholar 

  10. Vashook VV, Ullmann H, Olshevskaya OP, Kulik VP, Lukashevich VE, Kokhanovskij LV (2000) Composition and electrical conductivity of some cobaltates of the type La2 − x Sr x CoO4.5 − x/2 ± δ. J Solid State Ionics 138:99–104

    Article  CAS  Google Scholar 

  11. Moritomo Y, Higashi K, Matsuda K, Nakamura A (1997) Spin-state transition in layered perovskite cobalt oxides: La2 − x Sr x CoO4 (0.4⩽x⩽1.0). Phys Rev B 55:14725

    Article  Google Scholar 

  12. Shimada Y, Miyasaka S, Kumai R, Tokura Y (2006) Semiconducting ferromagnetic states in La1 − x Sr1 + x CoO4. Phys Rev B 73:134424

    Article  Google Scholar 

  13. Kharton VV, Yaremchenko AA, Shaula AL, Patrakeev MV, Naumovich EN, Logvinovich DI, Frade JR, Marques FMB (2004) Transport properties and stability of Ni-containing mixed conductors with perovskite and K2NiF4-type structure. J Solid State Chem 177:26–37

    Article  CAS  Google Scholar 

  14. Huang S, Ruan K, Lv Z, Wu H, Pang Z, Cao L, Li X (2006) Evidence for spin-glass states and Griffiths singularities in Nd0.75Sr1.25CoO4. J Phys Condens Matter 18:7135–7144

    Article  CAS  Google Scholar 

  15. Huang S, Ruan K, Lv Z, Zhuang L, Wei P, Wu H, Li M, Zhang J, Chai Y, Yang H, Cao L, Li X (2006) Magnetic and transport properties in layered Nd1 − x Sr1 + x CoO4. Phys rev B 73:94431

    Article  Google Scholar 

  16. Grandjean D, Weller MT (1993) Structure and oxygen stoichiometry in complex neodymium strontium cobalt copper oxides: [NdSrCo1 − x Cu x O4 − y ]. J Mat Res Bull 28:685–692

    Article  CAS  Google Scholar 

  17. Chaker H, Roisnel T, Potel M, Ben Hassen R (2004) Structural and electrical changes in NdSrNiO4 − δ by substitute nickel with copper. J Solid State Chem 177:4067–4072

    Article  CAS  Google Scholar 

  18. Arbuckle BW, Ramanujachary KV, Zhang Z, Greenblatt M (1990) Investigations on the structural, electrical, and magnetic properties of Nd2 − x Sr x NiO4 + δ. J Solid State Chem 88:278–290

    Article  CAS  Google Scholar 

  19. Chaker H, Députier S, Guizouarn T, Ben Hassen R, Perrin A, Guilloux-Viry M (2009) NdSrNi0.8Cu0.2O4 − δ thin films epitaxially grown by pulsed laser deposition on LaAlO3 and SrTiO3: a potential electrode for epitaxial regrowth of perovskite structure-based oxides. J Cryst Growth 311:2746–2752

    Article  CAS  Google Scholar 

  20. Chaker H, Roisnel T, Cador O, Amami M, Ben Hassen R (2006) Neutron powder diffraction studies of NdSrNi1 − x Cu x O4 − δ, 0 ≤ x ≤ 1 and magnetic properties. J Solid State Sci 8:142–148

    Article  CAS  Google Scholar 

  21. Chaker H, Roisnel T, Ceretti M, Ben Hassen R (2007) The synthesis, structural characterization and magnetic properties of compounds in the Ln2O3-SrO-NiO-CuO system for Ln = La, Nd, Gd, Dy, Ho and Er. J Alloys Comp 431:16–22

    Article  CAS  Google Scholar 

  22. Hamdi S, Ouni S, Chaker H, Ben Hassen R (2012) Synthesis, structural and electrical characterizations of Er0.33Sr1.67Ni0.8Cu0.2O4 − δ. J Powder Diffract 27:252–255

    Article  CAS  Google Scholar 

  23. Hamdi S, Ouni S, Chaker H, Rohlicek J, Ben Hassen R (2011) Synthesis, structural and electrical characterizations of DySr5Ni2.4Cu0.6O12 − δ. J Solid State Chem 184(11):2897–2901

    Article  CAS  Google Scholar 

  24. Chaker H, Roisnel T, Ceretti M, Ben Hassen R (2010) Rietveld refinement of X-ray powder data and bond valence calculations of NdSrNi0.5Cr0.5O4 − δ compound. J Powder Diffract 25:241–246

    Article  CAS  Google Scholar 

  25. Jammali M, Chaker H, Cherif K, Ben Hassen R (2010) Investigation on the structural and electrical properties of NdSrNi1 − x Cr x O4 + δ (0.1 ≤ x ≤ 0.9) system. J Solid State Chem 183:1194–1199

    Article  CAS  Google Scholar 

  26. Jammali M, Ben Hassen R, Rohlicek J (2012) Structural and electrical properties of Nd1.7Ba0.3Ni0.9Cr0.1O4 + δ compound. J Powder Diffract 27:184–188

    Article  CAS  Google Scholar 

  27. Rodriguez-Carvajal J (2001) Recent developments of the program FULLPROF. IUCr-CPD. News Lett 26:12

    Google Scholar 

  28. Van der Pauw LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9

    Google Scholar 

  29. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767

    Article  Google Scholar 

  30. Goldschmidt VM, Oslo A (1926) I Mater Nat 2:7

    Google Scholar 

  31. Ganguly P, Rao CN (1984) Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures. J Solid State Chem 53:193–216

  32. Takeda Y, Nishijima M, Imanishi N, Kanno R, Yamamoto O, Takano M (1992) Crystal chemistry and transport properties of Nd2 − x A x NiO4 (A = Ca, Sr, or Ba, 0 ≤ x ≤ 1.4). J Solid State Chem 96:72–83

    Article  CAS  Google Scholar 

  33. Altermalt D, Brown ID (1985) The Automatic Searching for Chemical Bonds in Inorganic Crystal Structures. Acta Cryst B 41:240–244

  34. Salinas-Sánchez A, García-Muñoz JL, Rodríguez-Carvajal J, Saez-Puche R, Martínez JL (1992) Structural characterization of R2 BaCuO5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron diffraction. J Solid State Chem 100:201–211

  35. Sánchez-Andújar M, Señarís-Rodríguez MA (2004) Synthesis, structure and microstructure of the layered compounds Ln1 − x Sr1 + x CoO4 (Ln: La, Nd and Gd). J Solid State Sci 6:21–27

    Article  Google Scholar 

  36. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247

    Article  CAS  Google Scholar 

  37. Wood RM, Palenik GJ (1998) Bond valence sums in coordination chemistry. A simple method for calculating the oxidation state of cobalt in complexes containing only Co−O bonds. Inorg Chem 37:4149–4151

    Article  CAS  Google Scholar 

  38. Rodriguez-Carvajal J Private communication

  39. Lewandowski JT, Beyerlein RA, Longo JM, Mccauley RA (1986) Nonstoichiometric K2NiF4-type phases in the lanthanum-cobalt-oxygen system. J Amer Ceram Soc 69:699–703

    Article  CAS  Google Scholar 

  40. Chaikin PM, Beni G (1976) Thermopower in the correlated hopping regime. Phys Rev B 13:647–651

    Article  CAS  Google Scholar 

  41. Mott N (1993) Conduction in non-crystalline materials. Clarendon, Oxford, pp 17–23

    Google Scholar 

  42. Laiho R, Lisunov KG, Lähderanta E, Stamov VN, Zakhvalinskii VS (2001) Variable range hopping conductivity in La1 − x Ca x MnO3. J Phys Condens Matter 13:1233–1246

    Article  CAS  Google Scholar 

  43. Ang R, Sun YP, Luo X, Hao CY, Song WH (2008) Studies of structural, magnetic, electrical and thermal properties in layered perovskite cobaltite SrLnCoO4 (Ln = La, Ce, Pr, Nd, Eu, Gd and Tb). J Phys D App Phys 41(4). doi:10.1088/0022-3727/41/4/045404

  44. Taguchi H, Nakade K, Hirota K (2007) Synthesis and characterization of K2NiF4-type CaLnCoO4 (Ln = Sm and Gd). Mater Res Bull 42:649–656

    Article  CAS  Google Scholar 

  45. Taguchi H, Hirata K, Kido H, Takeda Y, Kato M, Hirota K (2009) Hopping conductivity of distorted K2NiF4-type (Ca1 + x Nd1 − x )CrO4. Solid State Sci 11:1222–1225

    Article  CAS  Google Scholar 

  46. Khandale AP, Bansod MG, Bhoga SS (2015) Improved electrical and electrochemical performance of co-doped Nd1.8Sr0.2Ni1 − x Cu x O4 + δ. Solid State Ionics 276:127–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to S. PAOFAI and J. ROCHERULLE for their technical assistance as well as their contribution in TGA. Collective and individual acknowledgements are also owed to T. GUIZOUARN for his constant support in terms of electrical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanèn Chaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaker, H., Raies, I., Chouket, A. et al. Chemical and physical characterizations of the n = 1 Ruddlesden–Popper phases: Nd2 − y Sr y Ni1 − x Co x O4 ± δ (y = 1 and 0.1 ≤ x ≤ 0.9). Ionics 23, 2229–2240 (2017). https://doi.org/10.1007/s11581-017-2167-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2167-x

Keywords

Navigation