Skip to main content
Log in

Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Blend polymer electrolytes with optimized composition (92.5 PVA:7.5 PAN) doped with lithium triflate (LiCF3SO3) have been prepared in different concentrations by solution casting technique, using DMF as solvent. The prepared electrolytes have been characterized by XRD, FTIR, DSC, AC impedance, and SEM techniques. The complex formation between the blend polymer and the salt has been confirmed by X-ray diffraction and FTIR analyses. Differential scanning calorimetry thermogram has shown a decrease in glass transition temperature with the addition of salt. It has been observed that the ionic conductivity of the doped blend polymer electrolyte increases as the salt concentration increases. The ionic conductivity has been found to be 4.0 × 10−5 S cm−1 for 92.5 PVA:7.5 PAN:50 M wt% LiCF3SO3 sample at room temperature. The temperature dependence of ionic conductivity has been studied with Arrhenius plot and the activation energies have been calculated. Primary lithium ion battery has been constructed with the configuration Zn + ZnSO4 7H2O/ 92.5 PVA:7.5 PAN:50 M wt% LiCF3SO3/ PbO2 + V2O5 using the maximum conducting blend polymer, and its discharge characteristics have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dell RM (2000) Batteries: fifty years of materials development. Solid State Ionics 134(1–2):139–158

    Article  CAS  Google Scholar 

  2. Sarkhel D, Roy D, Bandyopadhyay M, Bhattacharya P (2003) Studies on separation characteristics and pseudo-equilibrium relationship in pervaporation of benzene–cyclohexane mixtures through composite PVA membranes on PAN supports. Sep Purif Technol 30:89–96

    Article  CAS  Google Scholar 

  3. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H, Sanjeeviraja C (2011) Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. J Non-Cryst Solids 357(22–23):3751–3756

    Article  CAS  Google Scholar 

  4. Kingslin Mary Genova F, Selvasekarapandian S, Karthikeyan S, Vijaya N, Sivadevi S, Sanjeeviraja C (2016) Lithium ion-conducting blend polymer electrolyte based on PVA–PAN doped with lithium nitrate. Polym-Plast Technol Eng 55(1):25–35

    Article  Google Scholar 

  5. Kingslin Mary Genova F, Selvasekarapandian S, Karthikeyan S, Vijaya N, Pradeepa R, Sivadevi S (2015) Study on blend polymer (PVA–PAN) doped with lithium bromide polymer science. Ser A 57(6):851–862

    Google Scholar 

  6. Subramania A, Kalyana Sundaram NT, Vijaya Kumar G, Vasudevan T (2006) New polymer electrolyte based on (PVA–PAN) blend for Li-ion battery applications. Ionics 12(2):175–178

    Article  CAS  Google Scholar 

  7. Siva devi S, Selvasekarapandian S, Karthikeyan S, Vijaya N, Kingslin Mary Genova F, Sanjeeviraja C (2012) Structural and AC impedance analysis of blend polymer electrolyte based on PVA and PAN. Int J Sci Res 2(10):1–3

    Google Scholar 

  8. Rajendran S, Sivakumar M, Subadevi R (2003) Effect of salt concentration in poly(vinyl alcohol)-based solid polymerelectrolytes. J Power Sources 124:225–230

    Article  CAS  Google Scholar 

  9. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  10. Stupp SI, Carr SH (1977) Chemical origin of thermally stimulated discharge currents in polyacrylonitrile. J Polym Sci Polym Phys Ed 15:485–499

    Article  CAS  Google Scholar 

  11. Coleman MM, Petcavich RJ (1978) Fourier transform infrared studies on the thermal degradation of polyacrylonitrile. J Polym Sci Polym Phys Ed 16:821–832

    Article  CAS  Google Scholar 

  12. Sivadevi S, Selvasekarapandian S, Karthikeyan S, Sanjeeviraja C, Nithya H, Iwai Y, Kawamura J (2014) Proton-conducting polymer electrolyte based on PVA-PAN blend polymer electrolyte doped with ammonium thiocyanate. Ionics 21:1017–1029

    Article  Google Scholar 

  13. Selvasekarapandian S, Hema M, Kawamura J, Kamishima O, Baskaran R (2010) Characterization of PVA–NH4NO3 polymer electrolyte and its application in rechargeable proton battery. J Phys Soc Jpn Suppl 79(Suppl. A):163–168

    Article  Google Scholar 

  14. Pickup PG (1990) Alternating current impedance study of a polypyrrole-based anion-exchange polymer. J Chem Soc Faraday Trans 86:3631

    Article  CAS  Google Scholar 

  15. Macdonald J R (1987) Impedance Spectroscopy (ed)., John Wiley & Sons: New York, pp. 12–23

  16. Ramesh S, Arof AK (2001) Ionic conductivity studies of plasticized poly(vinyl chloride) polymer electrolytes. Mater Sci Eng B 85:11–15

    Article  Google Scholar 

  17. Venkateswarlu M, Satyanarayana N (1998) AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries. Mater Sci Eng B 54:189–195

  18. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte. J Non-Cryst Solids 354:1494–1502

    Article  CAS  Google Scholar 

  19. Rajendran S, Sivakumar M, Subadevi R (2004) Investigations on the effect of various plasticizers in PVA-PMMA solid polymer electrolytes. Mater Lett 58:641–649

    Article  CAS  Google Scholar 

  20. Aravindan V, Vickraman P (2007) A novel gel electrolyte with lithium difluoro(oxalate)borate salt and Sb2O3 nanoparticles for lithium ion batteries. Solid State Sci 9:1069–1073

    Article  CAS  Google Scholar 

  21. Dutta P, Biswas S, Subodh Kumar De (2002) Dielectric relaxation in polyaniline–polyvinyl alcohol composites. Mater Res Bull 37:193–200

  22. Adachi K, Urakawa O (2002) Dielectric study of concentration fluctuations in concentrated polymer solutions. J Non-Cryst Solids 307–310:667–670

    Article  Google Scholar 

  23. Ulaganathan M, Rajendran S (2010) Effect of different salts on PVAc/PVdF-co-HFP based polymer blend electrolytes. J Appl Polym Sci 118:646–651

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingslin Mary Genova, F., Selvasekarapandian, S., Vijaya, N. et al. Lithium ion-conducting polymer electrolytes based on PVA–PAN doped with lithium triflate. Ionics 23, 2727–2734 (2017). https://doi.org/10.1007/s11581-017-2052-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2052-7

Keywords

Navigation