Skip to main content
Log in

Investigations on acceptor (Pr3+) and donor (Nb5+) doped cerium oxide for the suitability of solid oxide fuel cell electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nanocrystalline acceptor (Pr3+) and donor (Nb5+) doped cerium oxide are synthesized by sol-gel method via hydrolysis process and evaluated for the suitability of applying as an electrolyte for the intermediate temperature solid oxide fuel cells. Phase purity and crystallite size of the synthesized materials are ascertained by powder X-ray diffraction studies. Introduction of Pr3+ ions in the cerium lattice exhibited a lower crystallite size than the Nb5+, which exposes the probability to attain high oxide ion conductivity of Pr3+ doped cerium oxide. Fourier transform infrared and Raman spectra confirm the functional groups and formation of Pr3+ and Nb5+ ions in the cerium lattice. Absorbance spectra exhibit the charge-transfer transition from O2− (2p) to Ce4+ (4f) orbital in cerium oxide. Pr3+ and Nb5+ ions doped cerium lattice create the oxygen vacancies and favor the formation of Ce3+ from Ce4+. Valence band transition of Ce3+ ions from the 5d to 4f levels are examined by photoluminescence studies. The morphological features of Ce-Pr-O and Ce-Nb-O are investigated by scanning and transmission electron microscopy. Electrochemical impedance spectroscopy is used to analyze the conductivity properties of solid electrolytes. Ce-Pr-O shows the high oxide ion conductivity of 0.1 S/cm at 600 °C with an activation energy of 0.73 eV. Electrolytes with specific conductivities higher than 10−2 S/cm at intermediate temperatures (∼400–600 °C) are required for solid oxide fuel cells to operate with less maintenance. Hence, Ce-Pr-O can be a suitable electrolyte material for intermediate temperature solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Venkatasubramanian A, Gopalan P, Prasanna TRS (2010) Synthesis and characterization of electrolytes based on BaO–CeO2–GdO1.5 system for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 35:4597–4605

    Article  CAS  Google Scholar 

  2. Gnanam S, Rajendran V (2011) Synthesis of CeO2 or a–Mn2O3 nanoparticles via sol–gel process and their optical properties. J Sol-Gel Sci Technol 58:62–69

    Article  CAS  Google Scholar 

  3. Mukherjee ST, Bedekar V, Patra A, Sastry PU, Tyagi AK (2008) Study of agglomeration behavior of combustion-synthesized nano-crystalline ceria using new fuels. J Alloys Compd 466:493–497

    Article  CAS  Google Scholar 

  4. Goharshadi EK, Samiee S, Nancarrow P (2011) Fabrication of cerium oxide nanoparticles: characterization and optical properties. J Colloid Interface Sci 356:473–480

    Article  CAS  Google Scholar 

  5. Tok AIY, Boey FYC, Dong Z, Sun XL (2002) Hydrothermal synthesis of CeO2 nano-particles. J Mater Process Technol 190:217–222

    Article  Google Scholar 

  6. Kharton VV, Figueiredo FM, Navarro L, et al. (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105–1117

    Article  CAS  Google Scholar 

  7. Boudghene Stambouli A, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev 6:433–455

    Article  Google Scholar 

  8. Mark Ormerod R (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28

    Article  Google Scholar 

  9. Shao Z, Sossina M (2004) Haile a high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  CAS  Google Scholar 

  10. Singhal SC (2000) Advances in solid oxide fuel cell technology. Solid State Ionics 135:305–313

    Article  CAS  Google Scholar 

  11. Yamamoto O (2000) Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 45:2423–2435

    Article  CAS  Google Scholar 

  12. Xia Y, Bai Y, Wu X, Zhou D, Liu X, Meng J (2011) The competitive ionic conductivities in functional composite electrolytes based on the series of M-NLCO (M = Ce0.8Sm0.2O2-δ, Ce0.8Gd0.2O2-δ, Ce0.8Y0.2O2-δ; NLCO =0.53Li2CO3 - 0.47Na2CO3). Int J Hydrog Energy 36:6840–6850

    Article  CAS  Google Scholar 

  13. Shih S-J, Wu Y-Y, Borisenko KB (2011) Control of morphology and dopant distribution in yttrium-doped ceria nanoparticles. J Nanopart Res 13:1–8

    Article  Google Scholar 

  14. Dikmen S, Aslanbay H, Dikmen E, Sahin O (2010) Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell. J Power Sources 195:2488–2495

    Article  CAS  Google Scholar 

  15. Datta P, Majewski P, Aldinger F (2009) Study of gadolinia-doped ceria solid electrolyte surface by XPS. Mater Charact 60:138–143

    Article  CAS  Google Scholar 

  16. Guan X, Zhou H, Liu Z, Wang Y, Zhang J (2008) High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. Mater Res Bull 43:1046–1054

    Article  CAS  Google Scholar 

  17. Ando M, Oikawa I, Noda Y, Ohki S, Tansho M, Shimizu T, Kiyono H, Maekawa H (2011) High field O-17 NMR study of defects in doped zirconia and ceria. Solid State Ionics 192:576–579

    Article  CAS  Google Scholar 

  18. Fan Z, Chao C-C, Hossein-Babaei F, Prinz FB (2011) Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition. J Mater Chem 21:10903–10906

    Article  CAS  Google Scholar 

  19. Huijsman JPP, van Berkel FPF, Christie GM (1998) Intermediate temperature SOFC – a promise for the twenty-first century. J Power Sources 71:107–110

    Article  Google Scholar 

  20. Maricle DL, Swarr TE, Karavolis S (1992) Enhanced ceria—a low-temperature SOFC electrolyte. Solid State Ionics 52:173–182

    Article  CAS  Google Scholar 

  21. Song C (2002) Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the twenty-first century. Catal Today 77:17–49

    Article  CAS  Google Scholar 

  22. Zivkovic LS, Lair V, Lupan O, Cassir M, Ringuede A (2011) Samarium-doped ceria nanostructured thin films grown on FTO glass by electrodepostion. Acta Phys Pol A 120:298–302

    Article  CAS  Google Scholar 

  23. Singh V, Babu S, Karakoti AS, Agarwal A, Seal S (2010) Effect of submicron grains on ionic conductivity of nanocrystalline doped ceria. J Nanosci Nanotechnol 10:1–9

    Article  Google Scholar 

  24. Ramesh S, James Raju KC, Vishnuvardhan Reddy C (2011) Synthesis and characterization of co-doped ceria ceramics by sol-gel method. Trans Ind Ceram Soc 70:143–147

    Article  CAS  Google Scholar 

  25. Ninic M, Boskovic S, Nenadovic M, Zec S, Voisavljevic K, Minic D, Matovic B (2007) Cerium oxide based nanometric powders: synthesis and characterization. Sci Sinter 39:301–308

    Article  CAS  Google Scholar 

  26. Ou DR, Mori T, Ye F, Takahashi M, Zou J, Drennan J (2006) Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: dopant concentration and grain size dependences. Acta Mater 54:3737–3746

    Article  CAS  Google Scholar 

  27. Wang DY, Park DS, Griffith J, Nowick AS (1981) Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 2:95–105

    Article  CAS  Google Scholar 

  28. Huang W, Shuk P, Greenblattz M (2007) Hydrothermal synthesis and electrical characterization of (Ce0.83Sm0.17)1-x Ln x O2-δ (Ln = Pr, Tb) as potential electrolyte materials for solid oxide fuel cells. J Electrochem Soc 147:439–443

    Article  Google Scholar 

  29. Venkatesh V, Vishnuvardhan Reddy C (2013) Effect of Y on the properties of Sm-doped ceria for IT-SOFC applications. J Mod Phys 4:1499–1503

    Article  Google Scholar 

  30. Naik IK, Tien TY (1979) Electrical conduction in Nb2O5-doped cerium dioxide. J Electrochem Soc 126:562–566

    Article  CAS  Google Scholar 

  31. Huang W, Shuk P, Greenblatt M (1997) Hydrothermal synthesis and properties of Ce1-xSmxO2-x/2 and Ce1-xCaxO2-x solid solutions. Chem Mater 9:2240–2245

    Article  CAS  Google Scholar 

  32. Hongyun J, Wang N, Xu L, Hou S (2010) Synthesis and conductivity of cerium oxide nanoparticles. Mater Lett 64:1254–1256

    Article  Google Scholar 

  33. Mori T, Drennan J (2006) Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes. J Electroceram 17:749–757

    Article  CAS  Google Scholar 

  34. Masui T, Fujiwara K, Machida K-i, Adachi G-y (1997) Characterization of cerium (IV) oxide ultrafine particles prepared using reversed micelles. Chem Mater 9:2197–2204

    Article  CAS  Google Scholar 

  35. Laberty-Robert C, Long JW, Lucas EM, Pettigrew KA, Stroud RM, Doescher MS, Rolison DR (2006) Sol-gel-derived ceria nanoarchitectures: synthesis, characterization and electrical properties. Chem Mater 18:50–58

    Article  CAS  Google Scholar 

  36. Alexander L, Klug HP (1950) Determination of crystallite size with the X-ray spectrometer. J Appl Phys 21:137–142

    Article  CAS  Google Scholar 

  37. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  38. Jayaraman T, Raja SA, Priya A, Jagannathan M, Ashokkumar M (2015) Synthesis of a visible-light active V2O5-g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J Chem 39:1367–1374

    Article  CAS  Google Scholar 

  39. Amarsingh Bhabu K, Dhivya Saranya J, Rajasekaran TR (2013) Preparation and characterization of Ce0.8Y0.2O2 nanopowders using sol-gel method. Int J Mod Phys Conf Ser 22:533–544

    Article  Google Scholar 

  40. de Larramendi IR, Ortiz-Vitoriano N, Acebedo B, de Aberasturi DJ, de Muro IG, Arango A, Rodrıguez-Castellon E, de Larramendi JIR, Rojo T (2011) Pr-doped ceria nanoparticles as intermediate temperature ionic conductors. Int J Hydrog Energy 36:10981–10990

    Article  Google Scholar 

  41. Maso N, Beltran H, Munoz R, Julian B, Carda JB, Escribano P, Cordoncillo E (2003) Optimization of praseodymium-doped cerium pigment synthesis temperature. J Am Ceram Soc 86:425–430

    Article  CAS  Google Scholar 

  42. Olegario RC, de Souza ECF, Borges JFM, da Cunha JBM, de Andrade AVC, Antunes SRM, Antunes AC (2013) Synthesis and characterization of Fe3+ doped cerium-praseodymium oxide pigments. Dyes Pigments 97:113–117

    Article  CAS  Google Scholar 

  43. Ftikos C, Nauer M, Steele BCH (1993) Electrical conductivity and thermal expansion of ceria doped with Pr, Nb and Sn. J Eur Ceram Soc 12:267–270

    Article  CAS  Google Scholar 

  44. Wang Y, Mori T, Li J-G, Ikegami T (2002) Low temperature synthesis of praseodymium doped ceria nanopowders. J Am Ceram Soc 85:3105–3107

    Article  CAS  Google Scholar 

  45. da Fonseca RO, da Silva AAA, Signorelli MRM, Rabelo-Neto RC, Noronha FB, Simoesa RCC, Mattos LV (2014) Nickel / doped ceria solid oxide fuel cell anodes for dry reforming of methane. J Braz Chem Soc 25:2356–2363

    Google Scholar 

  46. Shrestha S, Yeung CMY, Nunnerley C, Tsang SC (2007) Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles. Sens Actuators A 136:191–198

    Article  CAS  Google Scholar 

  47. Ocana M (2002) Preparation and properties of uniform praseodymium doped ceria colloidal particles. Colloid Polym Sci 280:274–281

    Article  CAS  Google Scholar 

  48. Liu YH, Zuo JC, Ren XF, Yong L (2014) Synthesis and character of cerium oxide (CeO2) nanoparticles by the precipitation method. Metalurgija 53:463–465

    CAS  Google Scholar 

  49. Chelliah M, Rayappan JBB, Krishnan UM (2012) Synthesis and characterization of cerium oxide nanoparticles by hydroxide mediated approach. J Appl Sci 12:1734–1737

    Article  CAS  Google Scholar 

  50. Pragash R, Gijo J, Unnikrishnan NV, Sudarsanakumar C (2011) Energy transfer and thermal studies of Pr3+ doped cerium oxalate crystals. Bull Mater Sci 34:955–961

    Article  CAS  Google Scholar 

  51. Li G, Li L, Jiang D (2015) Facile synthesis of highly active mesoporous PdCeOx solid solution for low-temperature CO oxidation. J Phys Chem C 119:12502–12507

    Article  CAS  Google Scholar 

  52. Godinho MJ, Goncalves RF, Santos LPS, Varela JA, Longo E, Leite ER (2007) Room temperature co-precipitation of nanocrystalline CeO2 and Ce0.8Gd0.2O1.9−δ powder. Mater Lett 61:1904–1907

    Article  CAS  Google Scholar 

  53. Hungria AB, Martinez-Arias A, Fernandez-Garcia M, Iglesias-Juez A, Guerrero-Ruiz A, Calvino JJ, Conesa JC, Soria J (2003) Structural, morphological and oxygen handling properties of nanosized cerium-terbium mixed oxides prepared by microemulsion. Chem Mater 15:4309–4316

    Article  CAS  Google Scholar 

  54. Esther Jeyanthi C, Siddheswaran R, Pushpendra K, Singh J, Hui KN, Hui KS, Rajarajan K (2016) Synthesis, characterization and spectroscopic analysis of er-doped ceria (Ce0.9Er0.1O1.95) electrolyte for solid oxide fuel cells. Energy Environ Focus 3:196–201

    Article  Google Scholar 

  55. Bondioli F, Corradi AB, Manfredin T (2000) Nonconventional synthesis of praseodymium-doped ceria by flux method. Chem Mater 12:324–330

    Article  CAS  Google Scholar 

  56. Samiee S, Goharshadi EK, Nancarrow P (2012) Optical Properties of Ceria Nanoparticles. Proceedings of the 4th international conference on nanostructures, Kish Island, I.R. Iran 1222–1224

  57. Shehata N, Meeran K, Hudait M, Jain N (2012) Control of oxygen vacancies and Ce3+ concentrations in doped ceria nanoparticles via the selection of lanthanide element. J Nanopart Res 14:1–10

    Article  Google Scholar 

  58. Radhika S, Sreeram KJ, Nair BU (2014) Effective synthesis route for red-brown pigments based on Ce – Pr – Fe – O and their potential application for near infrared reflective surface coating. J Chem Sci 126:65–73

    Article  CAS  Google Scholar 

  59. Kim JJ, Bishop SR, Thompson N, Kuru Y, Tuller HL (2012) Optically derived energy band gap states of Pr in ceria. Solid State Ionics 225:198–200

    Article  CAS  Google Scholar 

  60. Cabral AC, Cavalcante LS, Deus RC, Longo E, Simoes AZ, Moura F (2014) Photoluminescence properties of praseodymium doped cerium oxide nanocrystals. Ceram Int 40:4445–4453

    Article  CAS  Google Scholar 

  61. Wang Z, Quan Z, Lin J (2007) Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions ooping. Inorg Chem 46:5237–5242

    Article  Google Scholar 

  62. Balakrishnan G, Raghavan CM, Ghosh C, Divakar R, Mohandas E, Song JI, Bae SI, Kim TG (2013) X-ray diffraction, Raman and photoluminescence studies of nanocrystalline cerium oxide thin films. Ceram Int 39:8327–8333

    Article  CAS  Google Scholar 

  63. Amarsingh Bhabu K, Theerthagiri J, Madhavan J, Balu T, Muralidharan G, Rajasekaran TR (2016) Enhanced electrochemical behavior of ceria based zirconia electrolytes for intermediate temperature solid oxide fuel cells. J Mater Sci Mater Electron. doi:10.1007/s10854-016-5214-x (Article in Press)

    Google Scholar 

  64. Florea M, Avram D, Cojocaru B, Tiseanu I, Parvulescu V, Tiseanu C (2016) Defects induced tunable infrared emission of Er-CeO2 by heterovalent co-dopants. Phys Chem Chem Phys DOI. doi:10.1039/C6CP02754G (Article in Press)

    Google Scholar 

  65. Ravi Chandran P, Arjunan TV, Gokila Krishnan G, Tirumalaisamy S (2014) Investigation on Mg and Sc doped ceria for intermediate temperature solid oxide fuel cell. JMME-IJENS 14:98–103

    Google Scholar 

  66. Ramesh S, James Raju KC (2012) Preparation and characterization of Ce1-x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs. Int J Hydrog Energy 37:10311–10317

    Article  CAS  Google Scholar 

  67. Acharya SA (2012) The effect of processing route on sinterability and electrical properties of nano-sized dysprosium-doped ceria. J Power Sources 198:105–111

    Article  CAS  Google Scholar 

  68. Singh NK, Singh P, Kumar D, Parkash O (2012) Electrical conductivity of undoped, singly doped and co-doped ceria. Ionics 18:127–134

    Article  CAS  Google Scholar 

  69. Omar S, Wachsman ED, Jones JL, Nino JC (2009) Crystal structure-ionic conductivity relationships in doped ceria systems. J Am Ceram Soc 92:2674–2681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (K. Amarsingh Bhabu) is grateful to the University Grants Commission (UGC), Government of India, for the award of research fellowship under the UGC-SAP-Basic Science Research Program. Authors also thank Mr. M. Veera Gajendra Babu, Research Scholar, Department of Physics, Manonmaniam Sundaranar University, for his valid discussions regarding Rietveld Refinement Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R Rajasekaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhabu, K.A., Theerthagiri, J., Madhavan, J. et al. Investigations on acceptor (Pr3+) and donor (Nb5+) doped cerium oxide for the suitability of solid oxide fuel cell electrolytes. Ionics 22, 2461–2470 (2016). https://doi.org/10.1007/s11581-016-1780-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1780-4

Keywords

Navigation