Skip to main content
Log in

Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Highly porous 3D nickel cobaltite nanoparticles were synthesized by combustion technique. X-ray diffraction study reveals the changes in phase, crystallinity, and particle size of the prepared samples with respect to calcination temperature. Typical porous 3D foam like morphology of the materials was identified from the FESEM and HRTEM images. BET measurement further confirms the mesoporous nature of the samples with high-surface area. Mixed valence state of ions was identified from XPS measurements. Electrochemical studies disclose the impact of calcination temperature on the electrodes capacitive performance. 3D porous morphology of the material allows the complete utilization of active material available for the electrolyte ions. NiCo2O4 calcined at 400 °C exhibited the maximum specific capacitance of 908 Fg−1 at 5 mV/s scan rate among the prepared samples and 90 % capacitance retention at the end of 1000 cycles. Impedance study demonstrates the low resistance and facile diffusion of electrolyte ions within the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ding R, Qi L, Wang H (2012) A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors. J Solid State Electrochem 16:3621–3633

    Article  CAS  Google Scholar 

  2. Su X, Yu L, Cheng G, Zhang H, Sun M, Zhang X (2015) High-performance a-MnO2 nanowire electrode for supercapacitors. Appl Energy 153:94–100

    Article  CAS  Google Scholar 

  3. Chang SK, Zainal Z, Tan KB, Yusof NA, Yusoff WMDW, Prabaharan SRS (2015) Recent development in spinel cobaltites for supercapacitor application. Ceram Int 41:1–14

    Article  CAS  Google Scholar 

  4. Zhi J, Deng S, Zhang Y, Wang Y, Hu A (2013) Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. J Mater Chem A 1:3171–3176

    Article  CAS  Google Scholar 

  5. Zhao DD, Xu MW, Zhou WJ, Zhang J, Li HL (2008) Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochim Acta 53:2699–2705

    Article  CAS  Google Scholar 

  6. Zhou W, Liu J, Chen T, Tan KS, Jia X, Luo Z, Cong C, Yang H, Li CM, Yu T (2011) Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys Chem Chem Phys 13:14462–14465

    Article  CAS  Google Scholar 

  7. Deng JJ, Deng JC, Liu ZL, Deng HR, Liu B (2009) Influence of addition of cobalt oxide on microstructure and electrochemical capacitive performance of nickel oxide. J Solid State Electrochem 13:1387–1394

    Article  CAS  Google Scholar 

  8. Naveen AN, Selladurai S (2014) Novel synthesis of highly porous spinel cobaltite (NiCo2O4) electrode material for supercapacitor applications. AIP Conference Proceedings 1591:246–248

    Article  CAS  Google Scholar 

  9. Li XG, Duan W, Huang MR, Rodrigucz LNJ (2005) Electrocopolymerization of metaphenylenediamine and orthophenetidine. React Funct Polym 62:261–270

    Article  CAS  Google Scholar 

  10. Li XG, Huang MR, Duan W, Yang YL (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev 102:2925–3030

    Article  CAS  Google Scholar 

  11. Li XG, Wang HY, Huang MR (2007) Synthesis, film-forming, and electronic properties of o-phenylenediamine copolymers displaying an uncommon tricolor. Macromolecules 40:1489–1496

    Article  CAS  Google Scholar 

  12. Li XG, Zhang JL, Huang MR (2014) Chemical response of nanocomposite membranes of electroactive polydiaminonaphthalene nanoparticles to heavy metal ions. J Phys Chem C 118:11990–11999

    Article  CAS  Google Scholar 

  13. Li XG, Zhang JL, Huang MR (2012) Interfacial synthesis and functionality of self-stabilized polydiaminonaphthalene nanoparticles. Chem Eur J 18:9877–9885

    Article  CAS  Google Scholar 

  14. Naveen AN, Selladurai S (2014) Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications. Electrochim Acta 125:404–414

    Article  CAS  Google Scholar 

  15. Inamdar AI, Kim YS, Pawar SM, Kim JH, Im H, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196:2393–2397

    Article  CAS  Google Scholar 

  16. Su X, Yu L, Cheng G, Zhang H, Sun M, Zhang L, Zhang J (2014) Controllable hydrothermal synthesis of Cu-doped α-MnO2 films with different morphologies for energy storage and conversion using supercapacitors. Appl Energy 134:439–445

    Article  CAS  Google Scholar 

  17. Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    Article  CAS  Google Scholar 

  18. Hwang SG, Ryu SH, Yun SR, Ko JM, Kim KM, Ryu KS (2011) Behavior of NiO–MnO2/MWCNT composites for use in a supercapacitor. Mater Chem Phys 130:507–512

    Article  CAS  Google Scholar 

  19. Liao M, Liu Y, Hu Z, Yu Q (2013) Novel morphologic Co3O4 of flower-like hierarchical microspheres as electrode material for electrochemical capacitors. J Alloys Compd 562:106–110

    Article  CAS  Google Scholar 

  20. Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S, Maria TL, Yang Y, Zhang H, Hng HH, Yan Q (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3(9):643–652

    Article  CAS  Google Scholar 

  21. Jiang H, Sun T, Li C, Ma J (2012) Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. J Mater Chem 22:2751–2756

    Article  CAS  Google Scholar 

  22. Zhu M, Wang Y, Meng D, Qin X, Diao G (2012) Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J Phys Chem C 116:16276–16285

  23. Li JM, Chang KH, Hu CC (2010) A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors. Electrochem Commun 12:1800–1803

    Article  CAS  Google Scholar 

  24. Liu XY, Zhang YQ, Xia XH, Shi SJ, Lu Y, Wang XL, Gu CD, Tu JP (2013) Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J Power Sources 239:157–163

  25. Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han SH, Ahn H (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J Alloys Compd 509:6677–6682

    Article  CAS  Google Scholar 

  26. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opinion Solid State Mater Sci 12:44–50

    Article  CAS  Google Scholar 

  27. Sutka A, Mezinskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6(2):128–141

    Article  Google Scholar 

  28. Verma S, Joshi HM, Jagadale T, Chawla A, Chandra R, Ogale S (2008) Nearly monodispersed multifunctional NiCo2O4 spinel nanoparticles: magnetism, infrared transparency, and radiofrequency absorption. J Phys Chem C 112:15106–15112

    Article  CAS  Google Scholar 

  29. Makhlouf MT, Abu-Zied BM, Mansoure TH (2013) Direct fabrication of cobalt oxide nanoparticles employing sucrose as a combustion fuel. Journal of Nanoparticles 384350:1–7

    Article  Google Scholar 

  30. Ananthakumar S, Anas S, Ambily J, Mangalaraja RV (2010) Microwave assisted citrate gel combustion synthesis of ZnO Part-I: assessment of structural features. J Ceram Process Res 11:29–34

    Google Scholar 

  31. Xiao SH, Jiang WF, Li LY, Li XJ (2007) Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater Chem Phys 106:82–87

    Article  CAS  Google Scholar 

  32. Nagarajan N, Humadi H, Zhitomirsky I (2006) Cathodic electrodeposition of MnO x films for electrochemical supercapacitors. Electrochim Acta 51:3039–3045

    Article  CAS  Google Scholar 

  33. Windisch CF, Exarhos GJ, Owings RR (2004) Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides. J Appl Phys 95:5435–5442

    Article  CAS  Google Scholar 

  34. Tseng CC, Lee JL, Liu YM, Ger MD, Shu YY (2013) Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors. J Taiwan Inst Chem Eng 44:415–419

    Article  CAS  Google Scholar 

  35. Nehru LC, Sanjeeviraja C (2013) ZnO nanoparticles by citric acid assisted microwave solution combustion method. J Ceram Process Res 14:712–716

    Google Scholar 

  36. Ganachari SV, Bhat R, Deshpande R, Venkataraman A (2012) Synthesis and characterization of nickel oxide nanoparticles by self-propagating low temperature combustion method. Recent Res Sci Technol 4(4):50–53

    CAS  Google Scholar 

  37. Wang H, Holt CMB, Li Z, Tan X, Amirkhiz BS, Xu Z, Olsen BC, Stephenson T, Mitlin D (2012) Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 5(9):605–617

    Article  CAS  Google Scholar 

  38. Gautier JL, Rios E, Gracia M, Marco JF, Gancedo JR (1997) Characterisation by X-ray photoelectron spectroscopy of thin Mn x Co3-x O4 (1 ≥ x ≥ 0) spinel films prepared by low-temperature spray pyrolysis. Thin Solid Films 311:51–57

    Article  CAS  Google Scholar 

  39. Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J Phys Chem C 116:12448–12454

    Article  CAS  Google Scholar 

  40. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:15646–15654

    Article  CAS  Google Scholar 

  41. Jiang H, Ma J, Li C (2012) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48:4465–4467

    Article  CAS  Google Scholar 

  42. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196

    Article  CAS  Google Scholar 

  43. Meher SK, Rao GR (2011) Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. J Phys Chem C 115:25543–25556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Anna University by providing Anna Centenary Research Fellowship (ACRF) for A. Nirmalesh Naveen is greatly appreciated (Lr.No.CR/ACRF/2013/37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nirmalesh Naveen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveen, A.N., Selladurai, S. Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application. Ionics 22, 1471–1483 (2016). https://doi.org/10.1007/s11581-016-1664-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1664-7

Keywords

Navigation