Skip to main content

Advertisement

Log in

Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper reports the polyethylene oxide/polyvinylpyrrolidone (PEO/PVP) blend with cobalt chloride (CoCl2) films prepared using spin coating method on blue star glass substrate. The XRD analysis shows the decrease in the crystallinity nature of the CoCl2 with addition of the dopant. The FT-IR analysis reveals that interaction between cobalt ions with polymer blend confirms the complexation. The maximum ionic conductivity 0.65 × 10−4 S cm−1 was observed for PEO (45 %)/PVP (45 %)/CoCl2 (10 %) at 30 °C. The optical energy band gaps decreases and Urbach energy were observed increases with increasing the dopant concentration. The DSC/TGA results showed that thermal stability of films enhanced with dopant concentration. Cyclic voltammogram (CV) study shows that the electrochemical strength improves with dopant concentration. These obtained results imply that polymer blend electrolytes are suitable candidature for various applications such as electronic and optical devices like electro-chromic display, fuel cells, gas sensors and solid state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Utracki LA (1990) Polymer alloys and blends. FRG, Carl Hanser, Munich

    Google Scholar 

  2. Zulfiqar S, Ahmad S (1999) Thermal degradation of blends of PVC with polysiloxane-1. Polym Degrad Stab 65:243–247

    Article  CAS  Google Scholar 

  3. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Shrma AK, Narasimha Rao VVR (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B 406:1706–1712

    Article  CAS  Google Scholar 

  4. Graham SM, Yuri GA, Peter GB (1999) Structure of the polymer electrolyte poly (ethylene oxide)6:LiAsF6. Nature 398:792–794

    Article  Google Scholar 

  5. Robson PP, Ana MR, Bielschowsky CE (2004) Poly (ethylene oxide): electronic structure, energetics, and vibrational spectrum. J Phys Chem B 108:12677–12684

    Article  Google Scholar 

  6. Ana MR, de Alexander AC, Robson PP (2010) Polymer electrolytes based on a ternary miscible blend of poly (ethylene oxide), poly (bisphenol A-co-epichlorohydrin) and poly (vinyl ethyl ether). Polymer 51:5151–5164

    Article  Google Scholar 

  7. Pereira RP, Rocco AM (2005) Nanostructure and crystallisation kinetics of poly (ethylene oxide)/poly (4-vinylphenol-co-2-hydroxyethyl methacrylate) blends. Polymer 46:12493–12502

    Article  CAS  Google Scholar 

  8. Fauteux D, Lupien MD, Robitaille CD (1987) Phase diagram, conductivity and transference number of PEO‐NaI electrolyte. J Electrochem Soc 134:2761–2767

    Article  CAS  Google Scholar 

  9. Greenbaum SG, Park YS, Wintersgill MC, Fontanella JJ, Schultz JW (1988) NMR, DSC, DMA, and high pressure electrical conductivity studies in PPO complexed with sodium perchlorate. J Electrochem Soc 135:235–238

    Article  CAS  Google Scholar 

  10. Greenbaum SG, Academic KJ, Pak YS, Wintersgill MC, Fontanella JJ (1988) NMR, DSC and electrical conductivity studies of MEEP complexed with NaCF3SO3. Solid State Ionics 28–30:1042–1046

    Article  Google Scholar 

  11. Munshi MZA, Gilmour A, Smyrl WH, Owens BB (1989) Sodium/V6013 polymer electrolyte cells. J Electrochem Soc 136:1847–1848

    Article  CAS  Google Scholar 

  12. Hasmi SA, Chandra A, Chandra S, Chowdari BVR (eds) (1992) Solid state ionics: materials and applications. World Scientific, Singapore, pp 561–567

    Google Scholar 

  13. Gupta RK, Agrawal RC (1994) Investigation on transport properties of the silver ion conducting composite electrolyte. Solid State Ionics 72:314–317

    Article  CAS  Google Scholar 

  14. Chandra S, Hashmi SA, Saleem M, Agrawal RC (1993) Investigations on poly ethylene oxide based polymer electrolyte complexed with AgNO3. Solid State Ionics 67:1–7

    Article  CAS  Google Scholar 

  15. Agrawal RC, Chandra A (2007) Ion transport and electrochemical cell performance studies on hot-press-synthesized Ag+ ion conducting electroactive polymeric membranes: (1-x)PEO:x[0.7(0.75AgI:0.25AgCl):0.3MI]. J Phys D Appl Phys 40:7024

    Article  CAS  Google Scholar 

  16. Kesavan K, Mathew CM, Rajendran S (2014) Lithium ion conduction and ion-polymer interaction in poly (vinyl pyrrolidone) based electrolytes blended with different plasticizers. Chin Chem Lett 25:1428–1434

    Article  CAS  Google Scholar 

  17. Ugur MH, Toker RD, Kayaman-Apohan N, Güngör A (2014) Preparation and characterization of novel thermoset polyimide and polyimide-peo doped with LiCF3SO3. Express Polym Lett 8:123–132

    Article  CAS  Google Scholar 

  18. Abdelrazek EM, Elashmawi IS (2008) Characterization and physical properties of CoCl2 filled polyethyl-methacrylate films. Polym Compos 29:1036–1043

    Article  CAS  Google Scholar 

  19. Oztekin A, Bornside DE, Brown RA, Seidel PK (1995) The connection between hydrodynamic stability of gas flow in spin coating and coated film uniformity. J Appl Phys 77:2297–2308

    Article  Google Scholar 

  20. Abdelrazek EM, Elashmawi IS, Labeeb S (2010) Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Physica B 405:2021–2027

    Article  CAS  Google Scholar 

  21. Mark AR, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124

    Article  Google Scholar 

  22. Khan TM, Zakria M, Ahmad M, Shakoor RI (2014) Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films. J Lumin 147:97–106

    Article  CAS  Google Scholar 

  23. Chapi S, Devendrappa H (2014) Influence of cobalt (II) chloride catalysed on the thermal and optical characterization of PEO based solid polymer electrolytes. J Res Updat Polym Sci 3:205–215

    Google Scholar 

  24. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer 37:1371–1376

    Article  CAS  Google Scholar 

  25. Subba Reddy CV, Jin AP, Zhu QY, Mai LQ, Chen W (2006) Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications. Eur Phys J E 19:471–476

    Article  Google Scholar 

  26. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-Cryst Solids 358:3205–3211

    Article  CAS  Google Scholar 

  27. Abdul-Aziz M, Abdelrazek EM (2007) Effect of dopant mixture on structural, optical and electron spin resonance properties of polyvinyl alcohol. Physica B 390:1–9

    Article  Google Scholar 

  28. Madani M (2010) Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation. Bull Mater Sci 33:65–73

    Article  CAS  Google Scholar 

  29. Reddeppa N, Sharma AK, Narasimha Rao VVR, Chen W (2013) Preparation and characterization of pure and KBr doped polymer blend (PVC/PEO) electrolyte thin films. Microelectron Eng 112:57–62

    Article  CAS  Google Scholar 

  30. Abdel-Galil A, Balboul MR, Atta A, Yahia IS, Sharaf A (2014) Preparation, structural and optical characterization of nanocrystalline CdS thin film. Physica B 447:35–41

    Article  CAS  Google Scholar 

  31. Davis PW, Shalliday TS (1960) Some optical properties of cadmium telluride. Phys Rev Lett 118:1020–1022

    CAS  Google Scholar 

  32. Abdul-Aziz M, Magdy MG (2010) Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Physica B 405:958–964

    Article  Google Scholar 

  33. El-Mansy MK, Sheha EM, Patel KR, Sharma GD (2013) Characterization of PVA/CuI polymer composites as electron donor for photovoltaic application. Optik 124:1624–1631

    Article  CAS  Google Scholar 

  34. Urbach F (1953) The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92:1324–1325

    Article  CAS  Google Scholar 

  35. Olley JA (1973) Structural disorder and the Urbach edge. Solid State Commun 13:1437–1440

    Article  CAS  Google Scholar 

  36. Mujdat C, Saliha I, Yasemin C (2009) Influence of dopant concentration on the optical properties of ZnO: in films by sol–gel method. Thin Solid Films 517:5023–5028

    Article  Google Scholar 

  37. Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946–2957

    Article  CAS  Google Scholar 

  38. Fink D, Chung WH, Klett R, Schmoldt A, Cardoso J, Montiel R, Vazquez MH, Wang L, Hosoi F, Omichi H, Goppelt-Langer P (1995) Carbonaceous clusters in irradiated polymers as revealed by UV-vis spectrometry. Radiat Eff Defects Solids 133:193–208

    Article  CAS  Google Scholar 

  39. Gupta S, Choudhary D, Sarma A (2000) Study of carbonaceous clusters in irradiated polycarbonate with UV–vis spectroscopy. J Polym Sci B Polym Phys 38:1589–1594

    Article  CAS  Google Scholar 

  40. Park CH, Kim DW, Prakash J, Yang-Kook S (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159:111–119

    Article  CAS  Google Scholar 

  41. Wagner JB, Wagner C (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601

    Article  CAS  Google Scholar 

  42. Reddeppa N, Ramamohan K, Ravi M, Guo X (2015) Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 278:260–267

    Article  Google Scholar 

  43. Saq’an SA, Ayesh AS, Zihlif A (2004) Optical and thermal properties of poly (ethylene oxide) doped with MnCl2 salt. Opt Mater 24:629–636

    Article  Google Scholar 

  44. Cohen LE, Rocco AM (2000) Study of the crystallization kinetics. Poly (ethylene oxide) and a blend of poly (ethylene oxide) and poly (bisphenol A-co-epichlorohydrin). J Therm Anal Calorim 59:625–632

    Article  CAS  Google Scholar 

  45. Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211

    Article  Google Scholar 

  46. Dey A, Karan S, De SK (2009) Effect of nanofillers on thermal and transport properties of potassium iodide polyethylene oxide solid polymer electrolyte. Solid State Commun 149:1282–1287

    Article  CAS  Google Scholar 

  47. Przyluski J, Such K, Wycislik H, Wieczorek W, Floriańczyk Z (1990) PEO-based polymer blends as materials for solid electrolytes. Synth Met 35:241–247

    Article  CAS  Google Scholar 

  48. Suriani I, Mohd Rafie J (2012) Thermolysis and conductivity studies of poly (ethylene oxide) (PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7:2596–2615

    Google Scholar 

  49. Rongrong J, Li L, Lian Y, Xu X, Zhao F (2012) Layered double hydroxide supported Prussian blue nanocomposites for electrocatalytic reduction of H2O2. Anal Methods 4:2704–2710

    Article  Google Scholar 

  50. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to UGC, Government of India for project fellowship (F.No.41-879/2012/SR dated 25-07-2012). The authors would like to acknowledge the PURSE, Mangalore University; Mangalagangotri for SEM and DSC/TGA facilities gratefully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendrappa H..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapi, S., S., R. & H., D. Enhanced electrochemical, structural, optical, thermal stability and ionic conductivity of (PEO/PVP) polymer blend electrolyte for electrochemical applications. Ionics 22, 803–814 (2016). https://doi.org/10.1007/s11581-015-1600-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1600-2

Keywords

Navigation