Skip to main content
Log in

Electrochemical behavior and voltammetric determination of dihydronicotinamide adenine dinucleotide using a glassy carbon electrode modified with single-walled carbon nanohorns

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We report a simple method for the direct and quantitative determination of dihydronicotinamide adenine dinucleotide (NADH) using a single-walled carbon nanohorn (SWCNH) modified glassy carbon electrode (GCE). The electrochemically activated SWCNH modified GCE (SWCNH/GCE) substantially lowers the overpotential necessary for NADH oxidation compared to the inactivated SWCNH/GCE or bare GCE. We observe a 89-mV shift in the peak potential of NADH from GCE to SWCNH/GCE and another 101-mV shift from inactivated SWCNH/GCE to activated SWCNH/GCE in phosphate buffer (pH 7.0) at a scan rate of 50 mV/s. The activated SWCNH/GCE shows a linear response toward NADH between 1 and 100 μM with the detection limit of 0.2 μM. The activated SWCNH/GCE displays good reproducibility, high sensitivity, and excellent stability. Furthermore, the fabricated electrochemical sensors were used to detect NADH in serum by standard addition method and the recoveries are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Radoi A, Compagnone D, Valcarcel MA, Placidi P, Materazzi S, Moscone D, Palleschi G (2008) Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue. Electrochim Acta 53:2161–2169

    Article  CAS  Google Scholar 

  2. Bergel A, Souppe J, Comtat M (1989) Enzymatic amplification for spectrophotometric and electrochemical assays of NAD+ and NADH. Anal Biochem 179:382–388

    Article  CAS  Google Scholar 

  3. Sun Y, Ren Q, Liu X, Zhao S, Qin Y (2013) A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials. Biosens Bioelectron 39:289–295

    Article  CAS  Google Scholar 

  4. Tang L, Zeng G, Shen G, Zhang Y, Li Y, Fan C, Liu C, Niu C (2009) Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode. Anal Bioanal Chem 393:1677–1684

    Article  CAS  Google Scholar 

  5. You JM, Jeon S (2011) Electrocatalytic oxidation of NADH on a glassy carbon electrode modified with MWVNT-Pd nanoparticles and poly 3,4-ethylenedioxypyrrole. Electrochim Acta 56:10077–10082

    Article  CAS  Google Scholar 

  6. Kumar SA, Chen SM (2008) Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes-A review. Sensors 8:739–766

    Article  CAS  Google Scholar 

  7. Lin KC, Yin CY, Chen SM (2012) Electrocatalytic oxidation of NADH based on polyluminol functionalized multi-walled carbon nanotubes. Analyst 137:1378–1383

    Article  CAS  Google Scholar 

  8. Chen J, Bao J, Cai C, Lu T (2014) Electrocatalytic oxidation of NADH at an ordered carbon nanotubes modified glassy carbon electrode. Anal Chim Acta 516:29–34

    Article  Google Scholar 

  9. Arvinte A, Valentini F, Radoi A, Arduini F, Tamburri E, Rotariu L, Palleschi G, Bala C (2007) The NADH electrochemical detection performed at carbon nanofibers modified glassy carbon electrode. Electroanalysis 19:1455–1459

    Article  CAS  Google Scholar 

  10. Manesh KM, Santhosh P, Gopalan A, Lee KP (2008) Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta 75:1307–1314

    Article  CAS  Google Scholar 

  11. Gasnier A, Pedano ML, Rubianes MD, Rivas GA (2013) Graphene paste electrode: electrochemical behavior and analytical applications for the quantification of NADH. Sensors Actuator B 176:921–926

    Article  CAS  Google Scholar 

  12. Meng L, Wu P, Chen GX, Cai CX, Sun YM, Yuan ZH (2009) Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode. Biosens Bioelectron 24:1751–1756

    Article  CAS  Google Scholar 

  13. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239

    Article  CAS  Google Scholar 

  14. Gao XGF, Yin J, Zhao D, Li M, Wang L (2011) Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and fuel cells. RSC Adv 1:1301–1309

    Article  CAS  Google Scholar 

  15. Yáñez-Sedeño P, Pingarrón JM, Riu J, Rius FX (2010) Electrochemical sensing based on carbon nanotubes. TrAC Trends Anal Chem 29:939–953

    Article  Google Scholar 

  16. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180

    Article  CAS  Google Scholar 

  17. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chem Int Ed 45:2533–2537

    Article  CAS  Google Scholar 

  18. Šljukic B, Banks CE, Compton RG (2006) Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett 6:1556–1558

    Article  Google Scholar 

  19. Ambrosi A, Chee SY, Khezri B, Webster RD, Sofer Z, Pumera M (2012) Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew Chem Int Ed 51:500–503

    Article  CAS  Google Scholar 

  20. Pumera M, Ambrosi A, Chng ELK (2012) Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chem Sci 3:3347–3455

    Article  CAS  Google Scholar 

  21. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphite carbon nano-horns. Chem Phy Lett 309:165–170

    Article  CAS  Google Scholar 

  22. Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2:2538–2549

    Article  CAS  Google Scholar 

  23. Musameh M, Lawrence NS, Wang J (2005) Electrochemical activation of carbon nanotubes. Electrochem Commun 7:14–18

    Article  CAS  Google Scholar 

  24. Keeley GP, O’Neill A, Holzinger M, Cosnier S, Coleman JN, Duesberg GS (2011) DMF-exfoliated graphene for electrochemical NADH detection. Phy Chem Chem Phy 13:7747–7750

    Article  CAS  Google Scholar 

  25. Wang YB, Iqbal Z, Mitra S (2005) Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43:1015–1020

    Article  CAS  Google Scholar 

  26. Gooding JJ, Praig VG, Hall EAH (1998) Platinum-catalyzed enzyme electrodes immobilized on gold using self-assembled layers. Anal Chem 70:2396–2402

    Article  CAS  Google Scholar 

  27. Raj CR, Chakraborty S (2006) Carbon nanotubes-polymer-redox mediator hybrid film for electrocatalytic sensing. Biosens Bioelectron 22:700–706

    Article  CAS  Google Scholar 

  28. Liu X, Li B, Ma M, Zhan G, Liu C, Li C (2012) Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly(acid fuchsin). Microchim Acta 176:123–129

    Article  CAS  Google Scholar 

  29. Guo K, Qian K, Zhang S, Kong J, Yu C, Liu B (2011) Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta 85:1174–1179

    Article  CAS  Google Scholar 

  30. Gao Q, Cui X, Yang F, Ma Y, Yang X (2003) Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosens Bioelectron 19:277–282

    Article  CAS  Google Scholar 

  31. Dilgin Y, Kizilkaya B, Dilgin DG, Gokcel HI, Gorton L (2013) Electrocatalytic oxidation of NADH using a pencil graphite electrode modified with quercetin. Colloid Surf B 102:816–821

    Article  CAS  Google Scholar 

  32. Wang Z, Shoji M, Ogata H (2012) Electrochemical determination of NADH based on MPECVD cabon nanosheets. Talanta 99:487–491

    Article  CAS  Google Scholar 

  33. Wu LN, Zhang XJ, Ju HX (2007) Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low potentials. Anal Chem 79:453–458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor S. Iijima (Solution Oriented Research for Science and Technology in Japan Science and Technology Agency) for generous offer of SWCNHs. This work is kindly supported by the National Natural Science Foundations of China (No. 21405094, No. 81303179, No. 21475074), by the Natural Science Foundation of Shandong Province (No. ZR2013BQ018), the Open Funds of the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201506), the Scientific Research Foundation of Qufu Normal University (No. xkj201301, No. bsqd2012023), and the Taishan Scholar Foundation of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuyun Zhu or Jinmao You.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhao, Xe., Chen, G. et al. Electrochemical behavior and voltammetric determination of dihydronicotinamide adenine dinucleotide using a glassy carbon electrode modified with single-walled carbon nanohorns. Ionics 21, 2911–2917 (2015). https://doi.org/10.1007/s11581-015-1472-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1472-5

Keywords

Navigation