Skip to main content

Advertisement

Log in

Enhanced electrochemical performance of nanomilling Co2SnO4/C materials for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Amorphous and crystalline hybrid structure Co2SnO4/C composites have been prepared by a facile way using coprecipitation process and high-energy ball milling technology. Electrochemical performance tests show that the composite anodes could maintain reversible capacity of higher than 550 mAh g−1 up to 100 cycles, much better than that of pure Co2SnO4 (194.1 mAh g−1). These materials also present better rate performance with fairly stable capacity retention when the current ranges from 100 to 500 mA g−1. Impedance measurements confirm that these composites are more beneficial for lithium diffusion compared to pure Co2SnO4. The graphite carbon not only buffers the volume expansion-related cracking but also provides excellent conductivity for this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kang B, Ceder G (2009) Nature 458:190

    Article  CAS  Google Scholar 

  2. Palanichamy K (2011) Ionics 17:391

    Article  CAS  Google Scholar 

  3. Zhang QF, Uchaker E, Candelariaza SL, Cao GZ (2013) Chem Soc Rev 42:3127

    Article  CAS  Google Scholar 

  4. Wang DW, Wu MH, Wang QH, Wang TM, Chen J (2011) Ionics 17:163

    Article  CAS  Google Scholar 

  5. Jeong GJ, Kim YU, Kim H, Kim YJ, Sohn HJ (2011) Energy Environ Sci 4:1986

    Article  CAS  Google Scholar 

  6. Chen XB, Gratzel CLM, Kosteckid R, Mao SS (2012) Chem Soc Rev 41:7909

    Article  CAS  Google Scholar 

  7. Connor PA, Irvine JTS (2001) J Power Sources 97:223

    Article  Google Scholar 

  8. Lei SJ, Tang KB, Chen CH, Jin Y, Zhou L (2009) Mater Res Bull 44:393

    Article  CAS  Google Scholar 

  9. Song WT, Xie J, Hu WY, Liu SY, Cao GS, Zhu TJ, Zhao XB (2013) J Power Sources 229:6

    Article  CAS  Google Scholar 

  10. Qi Y, Du N, Zhang H, Wu P, Yang DR (2011) J Power Sources 196:10234

    Article  CAS  Google Scholar 

  11. Wang G, Gao XP, Shen PW (2009) J Power Sources 192:719

    Article  CAS  Google Scholar 

  12. Wang G, Liu ZY, Liu P (2011) Electrochim Acta 56:9515

    Article  CAS  Google Scholar 

  13. Lee WW, Lee JM (2015) J Mater Chem A. doi:10.1039/c3ta12830j

    Google Scholar 

  14. Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanoscale 4:2526

    Article  CAS  Google Scholar 

  15. Shamirian A, Edrisi M, Naderi M (2013) J Mater Eng Perform 22:306

    Article  CAS  Google Scholar 

  16. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotech 3:31

    Article  CAS  Google Scholar 

  17. Hatchard TD, Dahn JR (2004) J Electrochem Soc 151:A838

    Article  CAS  Google Scholar 

  18. Epur R, Ramanathan M, Beck FR, Manivannan A, Kumta PN (2012) Mater Sci EngB 177:1157

    Article  Google Scholar 

  19. Tong YF, Xu Z, Liu C, Zhang GA, Wang J, Wu ZG (2014) J Power Sources 247:78

    Article  CAS  Google Scholar 

  20. Yin YJ, Wu P, Zhang H, Cai CX (2012) Electrochem Commun 18:1

    Article  Google Scholar 

  21. Huang L, Zheng XM, Wu YS, Xue LJ, Ke FS, Wei GZ, Sun SG (2009) Electrochem Commun 11:585

    Article  CAS  Google Scholar 

  22. Guo JC, Chen XL, Wang CS (2010) J Mater Chem 20:5035

    Article  CAS  Google Scholar 

  23. McCann JT, Lim B, Ostermann R, Rycenga M, Marquez M, Xia YN (2007) Nano Lett 7:2470

    Article  CAS  Google Scholar 

  24. Yoon YS, Jee SH, Lee SH, Nam SC (2011) Surf Coat Technol 206:553

    Article  CAS  Google Scholar 

  25. Nanda J, Datta MK, Remillard JT, O’Neill A, Kumta PN (2009) Electrochem Commun 11:235

    Article  CAS  Google Scholar 

  26. Alcantara R, Ortiz GF, Lavela P, Tirado JL (2006) Electrochem Commun 8:731

    Article  CAS  Google Scholar 

  27. Zheng SF, Hu JS, Zhong LS, Song WG, Wan LJ, Guo YG (2008) Chem Mater 20:3617

    Article  CAS  Google Scholar 

  28. Rong A, Gao XP, Li GR, Yan TY, Zhu HY, Qu JQ, Song DY (2006) J Phys Chem B 110:14754

    Article  CAS  Google Scholar 

  29. Yang SB, Song HH, Chen XH (2006) Electrochem Commun 8:137

    Article  CAS  Google Scholar 

  30. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Electrochem Commun 9:1180

    Article  CAS  Google Scholar 

  31. Ha J, Park SK, Yu SH, Jin AH, Jang B, Bong S, Kim I, Sung YE, Piao YZ (2013) Nanoscale 5:8647

    Article  CAS  Google Scholar 

  32. Zhang ZL, Zhang MJ, Wang YH, Tan QQ, Lv X, Zhong ZY, Li H, Su FB (2013) Nanoscale 5:5384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51101062 and 51171065); Science and Technology Project of Guangzhou City, China (Grant No. 2011 J4100075); Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. LYM09052); China Scholarship Council (No. 201308440314); Extracurricular Science Foundation for Students in South China Normal University of Guangdong, China (Grant No. 13WDGB03); The Scientific Research Foundation of Graduate School of South China Normal University (Grant No. 2013KYJJ039); Guangdong Natural Science Foundation (Grant Nos. S2012020010937, 10351063101000001, and 2014A030313436); Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangzhou 510631, China; and University-Industry Cooperation Projects of Guangdong Province, Ministry of Education and Science & Technology (Grant No. 2011A091000014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, B., Ru, Q., Hu, S. et al. Enhanced electrochemical performance of nanomilling Co2SnO4/C materials for lithium ion batteries. Ionics 21, 2485–2493 (2015). https://doi.org/10.1007/s11581-015-1437-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1437-8

Keywords

Navigation