Skip to main content
Log in

A new hyperbranched star polyether electrolyte with high ionic conductivity

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Hyperbranched poly(glycidol) containing hydroxyl groups was firstly synthesized via anionic polymerization and then reacted with 2-bromoisobutyl bromide to form macroinitiator HPG-Br. Finally, a hyperbranched star polymer (HPG-PPEGMA) was successfully prepared by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate using HPG-Br as macroinitiator. The structures and properties of the obtained polymers were characterized by 1H NMR, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The ionic conductivity of the polymer electrolytes composed of HPG-PPEGMA and lithium bis(trifluoromethanesulfonimide) (LiTFSI) was investigated via electrochemical impedance spectroscopy. The results showed that the room temperature ionic conductivity of the prepared hyperbranched star polymer electrolytes had a higher ionic conductivity. When [EO]/[Li] was 20, the ionic conductivity of the hyperbranched star polymer electrolyte was up to 1 × 10−4 Scm−1 at 30 °C. The onset decomposition temperature of the hyperbranched star polyether could reach 374 °C, indicating that the hyperbranched star polymer had a good thermal stability. The XRD results showed that the structure of the hyperbranched star polymer was beneficial to improve the ionic conductivity due to possessing a low degree of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng T, Wu F, Wu C, Wang X, Feng G, Yang H (2012) A free-standing, self-assembly ternary membrane with high conductivity for lithium-ion batteries. Solid State Ion 221:28–34

    Article  CAS  Google Scholar 

  2. Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45:1501–1508

    Article  CAS  Google Scholar 

  3. Lee S-I, Schömer M, Peng H, Page KA, Wilms D, Frey H, Soles CL, Yoon DY (2011) Correlations between ion conductivity and polymer dynamics in hyperbranched poly(ethylene oxide) electrolytes for lithium-ion batteries. Chem Mater 23:2685–2688

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  CAS  Google Scholar 

  5. Zhou S, Kim D (2010) All solid polymer electrolytes based on polar side group rotation for rechargeable lithium batteries. Polym Advan Technol 21:797–801

    Article  CAS  Google Scholar 

  6. Preechatiwong W, Schultz JM (1996) Electrical conductivity of poly(ethylene oxide)-alkali metal salt systems and effects of mixed salts and mixed molecular weights. Polymer 37:5109–5116

    Article  CAS  Google Scholar 

  7. Yang XQ, Lee HS, Hanson L, Mcbreen J, Okamoto Y (1995) Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect. J Power Sources 54:198–204

    Article  CAS  Google Scholar 

  8. Higa M, Fujino Y, Koumoto T, Kitani R, Egashira S (2005) All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization. Electrochim Acta 50:3832–3837

    Article  CAS  Google Scholar 

  9. Niitani T, Shimada M, Kawamura K, Kanamura K (2005) Characteristics of new-type solid polymer electrolyte controlling nano-structure. J Power Sources 146:386–390

    Article  CAS  Google Scholar 

  10. Sharma P, Kanchan DK, Gondaliya N (2013) Effect of ethylene carbonate concentration on structural and electrical properties of PEO-PMMA polymer blends. Ionics 19:777–785

    Article  CAS  Google Scholar 

  11. Sharma P, Kanchan DK, Gondaliya N, Pant M, Jayswal MS (2013) Conductivity relaxation in Ag + ion conducting PEO-PMMA-PEG polymer blends. Ionics 19:301–307

    Article  CAS  Google Scholar 

  12. Ulaganathan M, Mathew CM, Rajendran S (2013) Highly porous lithium-ion conducting solvent-free poly(vinylidene fluoride-co-hexafluoropropylene)/poly(ethyl methacrylate) based polymer blend electrolytes for Li battery applications. Electrochim Acta 93:230–235

    Article  CAS  Google Scholar 

  13. Hirahara K, Takano A, Yamamoto M, Kazama T, Isono Y, Fujimoto T, Watanabe O (1998) Fabrication of solid polymer electrolyte based on block-graft copolymer. 1. Precision synthesis and characterization of polystyrene-block-[poly(p-hydroxystyrene)-graft-poly(ethylene oxide)]-block-polystyrene. React Funct Polym 37:169–182

    Article  CAS  Google Scholar 

  14. Liu LL, Li ZH, Xia QL, Xiao QZ, Lei GT, Zhou XD (2012) Electrochemical study of P(VDF-HFP)/PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics 18:275–281

    Article  CAS  Google Scholar 

  15. Johan MR, Shy OH, Ibrahim S, Yassin SMM, Hui TY (2011) Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte. Solid State Ion 196:41–47

    Article  CAS  Google Scholar 

  16. Liao YH, Rao MM, Li WS, Tan CL, Yi J, Chen L (2009) Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries. Electrochim Acta 54:6396–6402

    Article  CAS  Google Scholar 

  17. Ren Z, Liu YY, Sun KN, Zhou XL, Zhang NQ (2009) A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim Acta 54:1888–1892

    Article  CAS  Google Scholar 

  18. Barbosa PC, Rodrigues LC, Silva MM, Smith MJ, Valente PB, Goncalves A, Fortunato E (2011) Characterization of polyether-poly(methyl methacrylate)-lithium perchlorate blend electrolytes. Polym Advan Technol 22:1753–1759

    Article  CAS  Google Scholar 

  19. Zheng T, Zhou Q, Li Q, Zhang LY, Li H, Lin Y (2014) A new branched copolyether-based polymer electrolyte for lithium batteries. Solid State Ion 259:9–13

    Article  CAS  Google Scholar 

  20. He D, Cho SY, Kim DW, Lee C, Kang Y (2012) Enhanced ionic conductivity of semi-IPN solid polymer electrolytes based on star-shaped oligo(ethyleneoxy)cyclotriphosphazenes. Macromolecules 45:7931–7938

    Article  CAS  Google Scholar 

  21. Ryou MH, Lee YM, Cho KY, Han GB, Lee JN, Lee DJ, Choi JW, Park JK (2012) A gel polymer electrolyte based on initiator-free photopolymerization for lithium secondary batteries. Electrochim Acta 60:23–30

    Article  CAS  Google Scholar 

  22. Li H, Ma XT, Shi JL, Yao ZK, Zhu BK, Zhu LP (2011) Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries. Electrochim Acta 56:2641–2647

    Article  CAS  Google Scholar 

  23. Matsumoto K, Sogabe S, Endo T (2012) Conductive networked polymer gel electrolytes composed of poly(meth)acrylate, lithium salt, and ionic liquid. J Polym Sci Pol Chem 50:1317–1324

    Article  CAS  Google Scholar 

  24. Matsumoto K, Endo T (2013) Design and synthesis of ionic-conductive epoxy-based networked polymers. React Funct Polym 73:278–282

    Article  CAS  Google Scholar 

  25. Zhao YH, Xu YY, Zhu BK (2009) Effect of amphiphilic hyperbranched-star polymer on the structure and properties of PVDF based porous polymer electrolytes. Solid State Ion 180:1517–1524

    Article  CAS  Google Scholar 

  26. Yang XH, Sun XY, Shao JJ, Liu YH, Wang XL (2004) Ionic conductivity of multiarm star polymer/LiClO4 electrolytes. J Polym Sci Pol Phys 42:4195–4198

    Article  CAS  Google Scholar 

  27. Ren ST, Chang HF, He LJ, Dang XF, Fang YY, Zhang LY, Li HY, Hu YL, Lin Y (2013) Preparation and ionic conductive properties of all-solid polymer electrolytes based on multiarm star block polymers. J Appl Polym Sci 129:1131–1142

    Article  CAS  Google Scholar 

  28. Sun XY, Yang XH, Liu YH, Wang XL (2004) Synthesis and characterization of a multiarm star polymer. J Polym Sci Pol Chem 42:2356–2364

    Article  CAS  Google Scholar 

  29. Sunder A, Hanselmann R, Frey H, Mulhaupt R (1999) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32:4240–4246

    Article  CAS  Google Scholar 

  30. Liu X, Liu HB, Guo PF, Xiao SJ (2011) Construction of multiple generation nitriloacetates from poly(PEGMA) brushes on planar silicon surface for enhancement of protein loading. Physica Status Solidi a-Applications Mater Sci 208:1462–1470

    Article  CAS  Google Scholar 

  31. Pang XC, Zhao L, Akinc M, Kim JK, Lin ZQ (2011) Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles. Macromolecules 44:3746–3752

    Article  CAS  Google Scholar 

  32. Wan DC, Liu HH, Jin M, Pu HT, Wang GW (2014) Facile Williamson etherification of hyperbranched polyglycerol and subtle core-dependent supramolecular guest selection of the resulting molecular nanocapsule. Eur Polym J 55:9–16

    Article  CAS  Google Scholar 

  33. Liu C, Zhang Y, Huang JL (2008) Well-defined star polymers with mixed-arms by sequential polymerization of atom transfer radical polymerization and reverse addition-fragmentation chain transfer on a hyperbranched polyglycerol core. Macromolecules 41:325–331

    Article  CAS  Google Scholar 

  34. Ramesh S, Liew CW (2013) Dielectric and FTIR studies on blending of [xPMMA-(1-x)PVC] with LiTFSI. Measurement 46:1650–1656

    Article  Google Scholar 

  35. Ren S, Zheng T, Zhou Q, Zhang L, Li H (2014) Preparation and ionic conductivity of composite polymer electrolytes based on hyperbranched star polymer. Ionics 20:1225–1234

  36. Zhang H, Liu CY, Zheng LP, Xu F, Feng WF, Li H, Huang XJ, Armand M, Nie J, Zhou ZB (2014) Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim Acta 133:529–538

    Article  CAS  Google Scholar 

  37. Ren ST, Chang HF, Zheng T, Dang XF, Zhang LY, Li HY, Lin Y (2013) Synthesis of HBPS-PEO multi-Arm star polymer electrolytes and their ionic conductivity. Acta Polym Sin 8:1064–1071

  38. Chen HW, Chang FC (2001) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769

    Article  CAS  Google Scholar 

  39. Wang YJ, Pan Y, Kim D (2007) Crystallinity, thermal properties, morphology and conductivity of quaternary plasticized PEO-based polymer electrolytes. Polym Int 56:381–388

    Article  CAS  Google Scholar 

  40. Mahendran O, Rajendran S (2003) Ionic conductivity studies in PMMA/PVDF polymer blend electrolyte with lithium salts. Ionics 9:282–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China (Nos. 51073170, 50703044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liaoyun Zhang or Huayi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Xing, Q., Ren, S. et al. A new hyperbranched star polyether electrolyte with high ionic conductivity. Ionics 21, 917–925 (2015). https://doi.org/10.1007/s11581-014-1253-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1253-6

Keywords

Navigation