Skip to main content
Log in

Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new composite polymer electrolyte membrane composed of hyperbranched star polymers (HBPS-(PMMA-b-PPEGMA)30 (the hyperbranched star polymer with hyperbranched polystyrene as core and polymethyl methacrylate block poly(ethylene glycol) methyl ether methacrylate) as arms)), ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) or 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF6)), and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) has been fabricated by solution casting method. This type of solid polymer electrolyte membrane shows an excellent flexibility, transparency, and free-standing properties. Room temperature ionic conductivity of composite electrolytes with 40 wt% BMImBF4 or 40 wt% BMImPF6 can reach 2.5 × 10−4 and 4.1 × 10−5 S cm−1, respectively. The HBPS-(PMMA-b-PPEGMA)30/BMImPF6/LiTFSI (the composite polymer electrolyte with 1-butyl-3-methylimidazolium hexafluorophosphate) composite polymer electrolyte displays better performances including a good thermal stability with decomposition temperature of 350 °C, a wide electrochemical window with oxidation potential of 4.3 V, and the excellent interfacial compatibility with lithium electrode. Moreover, the Li/LiFePO4 batteries based on HBPS-(PMMA-b-PPEGMA)30/BMImPF6/LiTFSI electrolyte retain about 96% of their highest discharge capacity (120.5 mAh g−1) after 100 cycles under a current density of 0.1 C at 60 °C, exhibiting the excellent reversible cyclability.

The free-standing composite electrolyte films composed of ionic liquids, hyperbranched star polymers and lithium salts show the high ionic conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu QW, Yang J, Lu W, Wang JL, Nuli Y (2015) Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochim Acta 152:489–495

    Article  CAS  Google Scholar 

  2. Hu Y, Sun X (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2(28):10712–10738

    Article  CAS  Google Scholar 

  3. Zhou G, Li F, Cheng H-M (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7(4):1307–1338

    Article  CAS  Google Scholar 

  4. Sengodu P, Deshmukh AD (2015) Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv 5(52):42109–42130

    Article  CAS  Google Scholar 

  5. Jung Y, Kim S, Kim M, Lee J, Han M, Kim D, Shin W, Ue M, Kim D (2015) Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety. J Power Sources 293:675–683

    Article  CAS  Google Scholar 

  6. Kimura K, Hassoun J, Panero S, Scrosati B, Tominaga Y (2015) Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics 21(3):895–900

    Article  CAS  Google Scholar 

  7. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  8. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540

    Article  CAS  Google Scholar 

  9. Wang Q, Song W-L, Fan L-Z, Song Y (2015) Flexible, high-voltage and free-standing composite polymer electrolyte membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for lithium-ion batteries. J Membrane Sci 492:490–496

    Article  CAS  Google Scholar 

  10. Wang Y, Zhong W-H (2015) Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. Chem Aust 2(1):22–36

    CAS  Google Scholar 

  11. Higa M, Fujino Y, Koumoto T, Kitani R, Egashira S (2005) All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization. Electrochim Acta 50(19):3832–3837

    Article  CAS  Google Scholar 

  12. Zhang Z, Sui G, Bi H, Yang X (2015) Radiation-crosslinked nanofiber membranes with well-designed core-shell structure for high performance of gel polymer electrolytes. J Membrane Sci 492:77–87

    Article  CAS  Google Scholar 

  13. Taib NU, Idris NH (2014) Plastic crystal-solid biopolymer electrolytes for rechargeable lithium batteries. J Membrane Sci 468:149–154

    Article  CAS  Google Scholar 

  14. Peng X, Zhou L, Jing B, Cao Q, Wang X, Tang X, Zeng J (2015) A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries. J Solid State Electr 20(1):255–262

    Article  Google Scholar 

  15. Wang Q, Song W-L, Fan L-Z, Song Y (2015) Facile fabrication of polyacrylonitrile/alumina composite membranes based on triethylene glycol diacetate-2-propenoic acid butyl ester gel polymer electrolytes for high-voltage lithium-ion batteries. J Membrane Sci 486:21–28

    Article  CAS  Google Scholar 

  16. Nunes-Pereira J, Costa CM, Lanceros-Mendez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398

    Article  CAS  Google Scholar 

  17. Garcia B, Lavallee S, Perron G, Michot C, Armand M (2004) Room temperature molten salts as lithium battery electrolyte. Electrochim Acta 49(26):4583–4588

    Article  CAS  Google Scholar 

  18. Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K (2008) LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)(-) for Li-ion batteries. J Power Sources 175(2):866–873

    Article  CAS  Google Scholar 

  19. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

    Article  CAS  Google Scholar 

  20. Appetecchi GB, Montanino M, Balducci A, Lux SF, Winterb M, Passerini S (2009) Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes I. Electrochemical characterization of the electrolytes. J Power Sources 192(2):599–605

    Article  CAS  Google Scholar 

  21. Lewandowski A, Swiderska-Mocek A (2007) Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide as an electrolyte. J Power Sources 171(2):938–943

    Article  CAS  Google Scholar 

  22. Balducci A, Jeong SS, Kim GT, Passerini S, Winter M, Schmuck M, Appetecchi GB, Marcilla R, Mecerreyes D, Barsukov V, Khomenko V, Cantero I, De Meatza I, Holzapfel M, Tran N (2011) Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). J Power Sources 196(22):9719–9730

    Article  CAS  Google Scholar 

  23. Pont A-L, Marcilla R, De Meatza I, Grande H, Mecerreyes D (2009) Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources 188(2):558–563

    Article  CAS  Google Scholar 

  24. Chopade SA, So SY, Hillmyer MA, Lodge TP (2016) Anhydrous proton conducting polymer electrolyte membranes via polymerization-induced microphase separation. ACS Appl Mater Interfaces 8(9):6200–6210

    Article  CAS  Google Scholar 

  25. Shin JH, Henderson WA, Scaccia S, Prosini PP, Passerini S (2006) Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 degrees C. J Power Sources 156(2):560–566

    Article  CAS  Google Scholar 

  26. Rupp B, Schmuck M, Balducci A, Winter M, Kern W (2008) Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid. Eur Polym J 44(9):2986–2990

    Article  CAS  Google Scholar 

  27. Shin JH, Henderson WA, Appetecchi GB, Alessandrini E, Passerini S (2005) Recent developments in the ENEA lithium metal battery project. Electrochim Acta 50(19):3859–3865

    Article  CAS  Google Scholar 

  28. Kim GT, Appetecchi GB, Carewska M, Joost M, Balducci A, Winter M, Passerini S (2010) UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids. J Power Sources 195(18):6130–6137

    Article  CAS  Google Scholar 

  29. Shin JH, Henderson WA, Passerini S (2003) Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun 5(12):1016–1020

    Article  CAS  Google Scholar 

  30. Stepniak I, Andrzejewska E, Dembna A, Galinski M (2014) Characterization and application of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide ionic liquid-based gel polymer electrolyte prepared in situ by photopolymerization method in lithium ion batteries. Electrochim Acta 121:27–33

    Article  CAS  Google Scholar 

  31. Deng FL, Wang XE, He D, Hu J, Gong CL, Ye YS, Xie XL, Xue ZG (2015) Microporous polymer electrolyte based on PVDF/PEO star polymer blends for lithium ion batteries. J Membrane Sci 491:82–89

    Article  CAS  Google Scholar 

  32. Hu XL, Hou GM, Zhang MQ, Zhang RX, Ruan WH, Huang YF (2016) Studies on solid-state polymer composite electrolyte of nano-silica/hyperbranched poly(amine-ester). J Solid State Electr 20(7):1845–1854

    Article  CAS  Google Scholar 

  33. Marzantowicz M, Dygas JR, Krok F, Tomaszewska A, Florjańczyk Z, Zygadło-Monikowska E, Lapienis G (2009) Star-branched poly(ethylene oxide) LiN(CF3SO2)2: a promising polymer electrolyte. J Power Sources 194(1):51–57

    Article  CAS  Google Scholar 

  34. Wang A, Xu H, Zhou Q, Liu X, Li Z, Gao R, Wu N, Guo Y, Li H, Zhang L (2016) A new all-solid-state hyperbranched star polymer electrolyte for lithium ion batteries: synthesis and electrochemical properties. Electrochim Acta 212:372–379

    Article  CAS  Google Scholar 

  35. Czerwinska M, Sikora A, Szajerski P, Zielonka J, Adamus J, Marcinek A, Piech K, Bednarek P, Bally T (2006) Anthralin: primary products of its redox reactions. J Org Chem 71(14):5312–5319

    Article  CAS  Google Scholar 

  36. L-y L, Wang B, Yang H-m, W-x C, Li J (2011) The direct substitutions of 9H-xanthen-9-ol with indoles in a room temperature ionic liquid medium BmimBF4. Tetrahedron Lett 52(43):5636–5639

    Article  Google Scholar 

  37. Namboodiri VV, Varma RS (2002) Solvent-free sonochemical preparation of ionic liquids. Org Lett 4(18):3161–3163

    Article  CAS  Google Scholar 

  38. Shimojo K, Goto M (2004) Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Anal Chem 76(17):5039–5044

    Article  CAS  Google Scholar 

  39. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Article  CAS  Google Scholar 

  40. Watanabe M, Nagano S, Sanui K, Ogata N (1988) Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 28:911–917

    Article  Google Scholar 

  41. Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9(9):1978–1988

    Article  CAS  Google Scholar 

  42. Zhang H, Liu C, Zheng L, Feng W, Zhou Z, Nie J (2015) Solid polymer electrolyte comprised of lithium salt/ether functionalized ammonium-based polymeric ionic liquid with bis(fluorosulfonyl)imide. Electrochim Acta 159:93–101

    Article  Google Scholar 

  43. Shalu CSK, Singh RK, Chandra S (2015) Electrical, mechanical, structural, and thermal behaviors of polymeric gel electrolyte membranes of poly(vinylidene fluoride-co-hexafluoropropylene) with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate plus lithium tetrafluoroborate. J Appl Polym Sci 132(7)

  44. He R, Kyu T (2016) Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes. Macromolecules 49(15):5637–5648

    Article  CAS  Google Scholar 

  45. Shin JH, Henderson WA, Passerini S (2005) PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc 152(5):A978–A983

    Article  CAS  Google Scholar 

  46. Reiter J, Vondrak J, Michalek J, Micka Z (2006) Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim Acta 52(3):1398–1408

    Article  CAS  Google Scholar 

  47. Diaw A, Chagnes A, Carre B, Willmann P, Lemordant D (2005) Mixed ionic liquid as electrolyte for lithium batteries. J Power Sources 146(1–2):682–684

    Article  CAS  Google Scholar 

  48. Marzantowicz M, Pozyczka K, Brzozowski M, Dygas JR, Krok F, Florjanczyk Z, Lapienis G (2014) From polymer to polyelectrolyte: studies of star-branched poly(ethylene oxide) with lithium functional groups. Electrochim Acta 115:612–620

    Article  CAS  Google Scholar 

  49. Cui Z, Xu Y, Zhu L, Wang J, Xi Z, Zhu B (2008) Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. J Membrane Sci 325(2):957–963

    Article  CAS  Google Scholar 

  50. Raphael E, Avellaneda CO, Manzolli B, Pawlicka A (2010) Agar-based films for application as polymer electrolytes. Electrochim Acta 55(4):1455–1459

    Article  CAS  Google Scholar 

  51. Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys Math 7(34):6823–6832

    CAS  Google Scholar 

  52. Rojas AA, Inceoglu S, Mackay NG, Thelen JL, Devaux D, Stone GM, Balsara NP (2015) Effect of lithium-ion concentration on morphology and ion transport in single-ion-conducting block copolymer electrolytes. Macromolecules 48(18):6589–6595

    Article  CAS  Google Scholar 

  53. Feng S, Shi D, Liu F, Zheng L, Nie J, Feng W, Huang X, Armand M, Zhou Z (2013) Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim Acta 93:254–263

    Article  CAS  Google Scholar 

  54. Fernicola A, Croce F, Scrosati B, Watanabe T, Ohno H (2007) LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries. J Power Sources 174(1):342–348

    Article  CAS  Google Scholar 

  55. Peng CX, Yang L, Wang BF, Zhang ZX, Li N (2006) Electrochemical behavior of aluminum foil in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids electrolytes. Chinese Sci Bull 51(23):2824–2830

    Article  CAS  Google Scholar 

  56. Ivanistsev V, Mendez-Morales T, Lynden-Bell RM, Cabeza O, Gallego LJ, Varela LM, Fedorov MV (2016) Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces. Phys Chem Chem Phys 18(2):1302–1310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express thanks for the supports of the National Natural Science Foundation of China (No. 51073170) and Innovation Program of CAS Combination of Molecular Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfeng Liu or Liaoyun Zhang.

Electronic supplementary material

ESM 1

(DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Xu, H., Zhou, Q. et al. Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries. J Solid State Electrochem 21, 2355–2364 (2017). https://doi.org/10.1007/s10008-017-3582-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3582-7

Keywords

Navigation