Skip to main content
Log in

The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nickel and manganese were codeposited from acidic chloride-sulfate solution in the presence and without sodium gluconate as complexing and buffering agent. Equilibrium pH-dependent distribution of soluble species in the baths was calculated. Deposition of metals was studied by cyclic voltammetry and Hull cell tests. Deposits were obtained in potentiostatic (−1.6 to −1.7 V vs. Ag/AgCl) and galvanostatic (4–8 A/dm2) conditions. It was found that the buffering action of gluconate ions improved the quality of the deposits, and compact Ni-Mn with a grid of fine crack layers was produced. The additive inhibited the formation of nonmetallic inclusions represented by decreased oxygen content in the deposits. Layers produced at constant potentials contained 67–79 % Ni, 1–8 % Mn, and 15–30 % O. Under galvanostatic conditions, the average compositions were in the range of 18–80 % Ni, 2–48 % Mn, and 17–42 % O. Despite of the bath composition, the main cathodic reaction was hydrogen evolution resulting in very low amounts of the cathodic deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Atanassov N, Mitreva V (1996) Electrodeposition and properties of nickel-manganese layers. Surf Coat Technol 78:144–149

    Article  CAS  Google Scholar 

  2. Kelly JJ, Goods SH, Yang NYC (2003) High performance nanostructured Ni-Mn alloy for microsystem applications. Electrochem Solid State Lett 6(6):C88–C91

    Article  CAS  Google Scholar 

  3. Goods SH, Kelly JJ, Yang NYC (2004) Electrodeposited nickel-manganese: an alloy for microsystem applications. Microsyst Technol 10:498–505

    Article  CAS  Google Scholar 

  4. Yang NYC, Headley TJ, Kelly JJ, Hruby JM (2004) Metallurgy of high strength Ni-Mn microsystems fabricated by electrodeposition. Scri Mater 51:761–766

    Article  Google Scholar 

  5. Talin AA, Marquis EA, Goods SH, Kelly JJ, Miller MK (2006) Thermal stability of Ni-Mn electrodeposits. Acta Mater 54:1935–1947

    Article  CAS  Google Scholar 

  6. Stephen A, Nagarajan T, Ananth MV (1998) Magnetization behaviour of electrodeposited Ni-Mn alloys. Mater Sci Eng B55:184–186

    Article  CAS  Google Scholar 

  7. Stephen A, Ananth MV, Ravichandran V, Narashiman BRV (2000) Magnetic properties of electrodeposited nickel-manganese alloys: effect of Ni/Mn bath ratio. J Appl Electrochem 30:1313–1316

    Article  CAS  Google Scholar 

  8. Fathi R, Sanjabi S (2012) Electrodeposition of nanostructured Ni(1 − x)Mnx alloys films from chloride bath. Curr Appl Phys 12:89–92

    Article  Google Scholar 

  9. Zhu Z, Li X, Zhu D (2013) Mechanical electrodeposition of Ni-Mn alloy. Mater Manuf Proc 28(12):1301–1304

    Article  CAS  Google Scholar 

  10. Brenner A (1963) Electrodeposition of alloys. Academic Press, NY

    Google Scholar 

  11. Wekesa M, Uddin J, Sobhi HF (2011) An insight into Mn(II) chemistry: a study of reaction kinetics under alkaline conditions. Int J Chem Res 2(4):34–37

    Google Scholar 

  12. Oriňáková R, Turonová A, Kladeková D, Gálová M, Smith RM (2006) Recent developments in the electrodeposition of nickel and some nickel-based alloys. J Appl Electrochem 36:957–972

    Article  Google Scholar 

  13. Rudnik E, Wojnicki M, Włoch G (2012) Effect of gluconate addition on the electrodeposition of nickel from acidic baths. Surf Coat Technol 207:375–388

    Article  CAS  Google Scholar 

  14. Chen K, Wilcox GD (2006) Tin-manganese alloy electrodeposits. J Electrochem Soc 153(9):C634–C640

    Article  CAS  Google Scholar 

  15. Wu J, Jiang Y, Johson C, Liu X (2008) DC electrodeposition of Mn-Co alloys on stainless steels for SOFC interconnect application. J Power Sources 177:376–385

    Article  CAS  Google Scholar 

  16. Gonsalves M, Pletcher D (1990) A study of the electrodeposition of manganese from aqueous chloride electrolytes. J Electroanal Chem 285:185–193

    Article  CAS  Google Scholar 

  17. Diaz-Arista P, Trejo G (2006) Electrodeposition and characterization of manganese coatings obtained from an acidic chloride bath containing ammonium thiocyanate as an additive. Surf Coat Technol 201:3359–3367

    Article  CAS  Google Scholar 

  18. Gong J, Zangari G (2002) Electrodeposition and characterization of manganese coatings. J Electrochem Soc 149(4):C209–C217

    Article  CAS  Google Scholar 

  19. (1998) MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: user manual supplement for version 4.0

  20. Felmy AR, Mason MJ, Qafoku O (2003) Thermodynamic data development for modeling Sr/TRU separations: Sr-EDTA, Sr-HEDTA and Mn-gluconate complexation. Battelle Memorial Institute, Washington

    Google Scholar 

  21. Bodini ME, Sawyer DT (1976) Electrochemical and spectroscopic studies of Mn(II), Mn(III) and Mn(IV) gluconate complexes. Inorg Chem 15(7):1538–1543

    Article  CAS  Google Scholar 

  22. Escandar GM, Peregrin JM, Sierra MG, Martino D et al (1996) Interaction of divalent metal ions with D-gluconic acid in the solid phase and aqueous solution. Polyhed 15(13):2251–2261

    Article  CAS  Google Scholar 

  23. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon, New York

    Google Scholar 

  24. Fleischmann M, Saraby-Reintjes A (1984) The simultaneous deposition of nickel and hydrogen on vitreous carbon. Electrochim Acta 29(1):69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was realized under Project No. AGH 11.11.180.373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Rudnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudnik, E., Włoch, G. The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths. Ionics 20, 1747–1755 (2014). https://doi.org/10.1007/s11581-014-1137-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1137-9

Keywords

Navigation