Skip to main content
Log in

Liquidity risk and optimal dividend/investment strategies

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

In this paper, we study the problem of determining an optimal control on the dividend and investment policy of a firm operating under uncertain environment and risk constraints. We allow the company to make investment decisions by acquiring or selling producing assets whose value is governed by a stochastic process. The firm may face liquidity costs when it decides to buy or sell assets. We formulate this problem as a multi-dimensional mixed singular and multi-switching control problem and use a viscosity solution approach. We numerically compute our optimal strategies and enrich our studies with numerical results and illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asmussen, S., Taksar, M.: Controlled diffusion models for optimal dividend pay-out. Insur. Math. Econ. 20, 1–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bayraktar, E., Egami, M.: On the one-dimensional optimal switching problem. Math. Oper. Res. 35(1), 140–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boguslavskaya E.: On optimization of dividend flow for a company in a presence of liquidation value. Working Paper. http://www.boguslavsky.net/fin/index.html

  4. Brekke, K., Oksendal, B.: Optimal switching in an economic activity under uncertainty. SIAM J. Contin. Optim. 32, 1021–1036 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Budhiraja, A., Ross, K.: Convergent numerical scheme for singular stochastic control with state constraints in a portfolio selection problem. SIAM J. Control Optim. 45(6), 2169–2206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carmona, R., Ludkovski, M.: Valuation of energy storage: an optimal switching approach. Quant. Financ. 10(4), 359–374 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chevalier, E., Ly Vath, V., Scotti, S.: An optimal dividend and investment control problem under debt constraints. SIAM J. Finan. Math. 4(1), 297–326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choulli, T., Taksar, M., Zhou, X.Y.: A diffusion model for optimal dividend distribution for a company with constraints on risk control. SIAM J. Contin. Optim. 41, 1946–1979 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, M., Zhang, Q., Zhu, Q.: Trend following trading under a regime switching model. SIAM J. Finan. Math. 1, 780–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Décamps, J.P., Villeneuve, S.: Optimal dividend policy and growth option. Financ. Stoch. 11, 3–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Djehiche, B., Hamadène, S., Popier, A.: A finite horizon optimal switching problem. SIAM J. Control Optim. 48(4), 2751–2770 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duckworth, K., Zervos, M.: A model for investment decisions with switching costs. Ann. Appl. Probab. 11, 239–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, X., Tomecek, P.: Connections between singular control and optimal switching. SIAM J. Control Optim. 47(1), 421–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamadène, S., Jeanblanc, M.: On the starting and stopping problem: application in reversible investments. Math. Oper. Res. 32(1), 182–192 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haussman, U.G., Suo, W.: Singular optimal stochastic control II: dynamic programming. SIAM J. Control Optim. 33(3), 937–959 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hindy, A., Huang, C., Zhu, H.: Numerical analysis of a free-boundary singular control problem in financial economics. J. Econ. Dyn. Control 21, 297–327 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu, Y., Tang, S.: Multi-dimensional BSDE with oblique reflection and optimal switching. Prob. Theory Relat. Fields 147(1–2), 89–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeanblanc, M., Shiryaev, A.: Optimization of the flow of dividends. Russ. Math. Surv. 50, 257–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, Z., Pistorius, M.: Optimal dividend distribution under Markov regime switching. Financ. Stoch. 16, 449–476 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, Z., Yin, G., Zhu, C.: Numerical solutions of optimal risk control and dividend optimization policies under a generalized singular control formulation. Automatica 48(8), 1489–1501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kushner, H., Dupuis, P.: Numerical Methods for Stochstic Control Problems in Continuous Time. Stochastic Modelling and Applied Probability, vol. 24, 2nd edn. Springer, New York (2001)

    Book  Google Scholar 

  23. Lon, P.C., Zervos, M.: A model for optimally advertising and launching a product. Math. Oper. Res. 36, 363–376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ly Vath, V., Pham, H.: Explicit solution to an optimal switching problem in the two-regime case. SIAM J. Contin. Optim. 46, 395–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ly-Vath, V., Pham, H., Villeneuve, S.: A mixed singular/switching control problem for a dividend policy with reversible technology investment. Ann. Appl. Probab. 18, 1164–1200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pham, H.: Continuous-time stochastic control and optimization with financial applications. Stoch. Model. Appl. Probab. 61, 232p (2009)

    MathSciNet  Google Scholar 

  27. Pham, H., Ly Vath, V., Zhou, X.Y.: Optimal switching over multiple regimes. SIAM J. Control Optim. 48, 2217–2253 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Touzi, N.: Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE. Fields Institute Monographs, vol. 29. Springer, New York (2013)

    Book  MATH  Google Scholar 

  29. Zervos, M., Johnson, T., Alazemi, F.: Buy-low and sell-high investment strategies. Math. Financ. 23, 560–578 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research benefitted from the support of the “Chaire Marchés en Mutation”, Fédération Bancaire Française. The authors thank two anonymous referees for their constructive comments which have led to a much improved version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vathana Ly Vath.

Appendix

Appendix

Proof of Lemma 3.2:

Consider any \({\bar{y}}\,\,{:=}\,\,({\bar{x}},{\bar{s}},{\bar{q}}) \in (0,+\infty )^2\times \mathbb {N}\) and let \(\varphi (.,.,{\bar{q}})\) a \(\mathcal{C}^{2}\) function on \((0,+\infty )^2\) such that \(v_N^l({\bar{y}})=\varphi ({\bar{y}})\) and \(v^l_N-\varphi \ge 0\) in a neighborhood of \({\bar{y}}\) denoted by \({\bar{B}}_{\varepsilon }({\bar{y}})\,\,{:=}\,\,({\bar{x}}-\varepsilon ,{\bar{x}}+\varepsilon )\times ({\bar{s}}-\varepsilon ,{\bar{s}}+\varepsilon )\times \{{\bar{q}}\}\) where \(0<\varepsilon <\min ({\bar{x}},{\bar{s}})\).

On the one hand, we obviously have \(v_N\ge G_{N-1}\) and as \(G_{N-1}\) is continuous, it implies that \(v_N^l\ge G_{N-1}\). Therefore, we

$$\begin{aligned} \varphi ({\bar{y}})=v^l_N({\bar{y}})\ge G_{N-1}({\bar{y}}). \end{aligned}$$
(4.1)

On the other hand, let us consider the admissible control \({\hat{\alpha }}=(({\hat{\tau }}_i,{\hat{q}}_i)_{i\ge 1},{\hat{Z}})\) where we decide to never make an impulse, i.e. \({\hat{\tau }}_1=+\infty \), while the dividend policy is defined by \({\hat{Z}}=\delta \) for \(t \ge 0\), with \(0 \le \delta \le \varepsilon \). We know that there exists a sequence \(({\bar{x}}_m,{\bar{s}}_m)_{m\in \mathbb {N}}\) such that

$$\begin{aligned} \lim _{m\rightarrow +\infty }({\bar{x}}_m,{\bar{s}}_m)=({\bar{x}},{\bar{s}})\quad \text {and}\quad \lim _{m\rightarrow +\infty }v_N({\bar{x}}_m,{\bar{s}}_m, {\bar{q}})=v_{N}^l({\bar{x}},{\bar{s}},{\bar{q}}). \end{aligned}$$

With the same notation, we set \({\bar{y}}_m = ({\bar{x}}_m, {\bar{s}}_m, {\bar{q}})\).

We define the exit time \(\tau ^m_{\varepsilon } \,\,{:=}\,\, \inf \{t \ge 0, Y^{{\bar{y}}_m}_{t} \not \in {\bar{B}}_{\varepsilon }({\bar{y}})\} \). We notice that \(\tau ^m_{\varepsilon } < T\).

From the dynamic programming principle (see (3.16)), if we set \(\gamma _m \,\,{:=}\,\, v_N({\bar{y}}_m)-\varphi ({\bar{y}}_m)\ge 0\) and \(\nu _m =\tau ^m_{\varepsilon }\wedge h_m\) where \((h_m)_{m\ge 0}\) is a positive sequence such that \(\lim _{m\rightarrow +\infty } h_m =0\) and \(\lim _{m\rightarrow +\infty }\gamma _m/\! h_m=0\), then we have

$$\begin{aligned} \varphi ({\bar{y}}_m)= & {} v_N({\bar{y}}_m)-\gamma _m\nonumber \\\ge & {} \mathbb {E}\Big [\int _0^{\nu _m^{-}}e^{-\rho t}\, d{\hat{Z}}_t+e^{-\rho \nu _m}v_N\left( Y_{\nu _m}^{{\bar{y}}_m}\right) \Big ]-\gamma _m\nonumber \\\ge & {} \mathbb {E}\Big [ \int _0^{\nu _m^{-}}e^{-\rho t}\, d{\hat{Z}}_t+e^{-\rho \nu _m}v_N^l\left( Y_{\nu _m}^{{\bar{y}}_m}\right) \Big ]-\gamma _m\nonumber \\\ge & {} \mathbb {E}\Big [ \int _0^{\nu _m^{-}}e^{-\rho t}\, d{\hat{Z}}_t+e^{-\rho \nu _m}\varphi \left( Y_{\nu _m}^{{\bar{y}}_m}\right) \Big ]-\gamma _m. \end{aligned}$$
(4.2)

Applying Itô’s formula to the process \(e^{-\rho t}\varphi (Y_{t}^{{\bar{y}}_m})\) between 0 and \(\nu _m\) and taking the expectation, we obtain

$$\begin{aligned} \mathbb {E}\Big [e^{-\rho \nu _m}\varphi (Y_{\nu _m}^{{\bar{y}}_m})\Big ]= & {} \varphi ({\bar{y}}_m)+ \mathbb {E}\Big [ \int _0^{\nu _m^{-}}e^{-\rho t}\,(-\rho \varphi + \mathcal{L}\varphi )(Y_{t}^{{\bar{y}}_m})dt\Big ]\nonumber \\&+\, \mathbb {E}\left[ \sum _{0 \le t < \nu _m} e^{-\rho t}[\varphi (Y_{t}^{{\bar{y}}_m})-\varphi (Y_{t^{-}}^{{\bar{y}}_m})]\right] . \end{aligned}$$
(4.3)

Combining relations (4.2) and (4.3), we have

$$\begin{aligned}&\mathbb {E}\Big [ \int _0^{\nu _m^{-}}e^{-\rho t}\,(\rho \varphi - \mathcal{L}\varphi )(Y_{t}^{{\bar{y}}_m})dt\Big ] - \mathbb {E}\Big [ \int _0^{\nu _m^{-}}e^{-\rho t}\,d{\hat{Z}}_t\Big ]\nonumber \\&\quad -\mathbb {E}\left[ \sum _{0 \le t < \nu _m} e^{-\rho t}[\varphi (Y_{t}^{{\bar{y}}_m})-\varphi (Y_{t^{-}}^{{\bar{y}}_m})]\right] \ge -\gamma _m. \end{aligned}$$
(4.4)
  • If we take \(\delta =0\), we notice that Y is continuous on \([0,\nu _m]\) and only the first term of relation (4.4) is non zero. By dividing the above inequality by \(h_m\) and letting m going to infinity, it follows from the smoothness of \(\varphi \) and the continuity of the coefficients that

    $$\begin{aligned} (\rho \varphi - \mathcal{L}\varphi )({\bar{y}}) \ge 0. \end{aligned}$$
    (4.5)
  • If we take now \(\delta >0\) in (4.4), we notice that \({\hat{Z}}\) jumps only at \(t=0\) with size \(\delta \), hence

    $$\begin{aligned} \mathbb {E}\Big [ \int _0^{\nu _m^{-}}e^{-\rho t}\,(\rho \varphi - \mathcal{L}\varphi )(Y_{t}^{{\bar{y}}_m})dt\Big ]- \delta -(\varphi ({\bar{x}}_m-\delta ,{\bar{s}}_m,{\bar{q}})- \varphi ({\bar{x}}_m,{\bar{s}}_m,{\bar{q}}))\ge -\gamma _m.\nonumber \\ \end{aligned}$$
    (4.6)

By sending m to infinity, and then dividing by \(\delta \) and letting \(\delta \rightarrow 0\), we obtain

$$\begin{aligned} \frac{\partial \varphi }{\partial x}({\bar{x}},{\bar{s}},{\bar{q}})-1 \ge 0. \end{aligned}$$
(4.7)

We conclude by combining (4.1), (4.5) and (4.7) to obtain the required supersolution property

$$\begin{aligned} \min \left\{ \rho \varphi ({\bar{x}},{\bar{s}},{\bar{q}}) - \mathcal{L}\varphi ({\bar{x}},{\bar{s}},{\bar{q}}); \frac{\partial \varphi }{\partial x}({\bar{x}},{\bar{s}},{\bar{q}})- 1; v_N^l({\bar{x}},{\bar{s}},{\bar{q}})-G_{N-1}({\bar{x}},{\bar{s}},{\bar{q}}) \right\} \ge 0.\nonumber \\ \end{aligned}$$
(4.8)

Proof of Lemma 3.3:

Consider any \({\bar{y}}\,\,{:=}\,\,({\bar{x}},{\bar{s}},{\bar{q}}) \in (0,+\infty )^2\times \mathbb {N}\) and let \(\varphi (.,.,{\bar{q}})\) a \(\mathcal{C}^{2}\) function on \((0,+\infty )^2\) such that \(v_N^u({\bar{y}})=\varphi ({\bar{y}})\) and \(v_N^u-\varphi \le 0\) in a neighborhood of \({\bar{y}}\), denoted by \({\bar{B}}_{\varepsilon }({\bar{y}})\,\,{:=}\,\,({\bar{x}}-\varepsilon ,{\bar{x}}+\varepsilon )\times ({\bar{s}}-\varepsilon ,{\bar{s}}+\varepsilon )\times \{{\bar{q}}\}\) where \(0<\varepsilon <\min ({\bar{x}},{\bar{s}})\).

Let us argue by contradiction by assuming on the contrary that \(\exists \, \delta > 0\) s.t. \(\forall y \in {\bar{B}}_{\varepsilon }({\bar{y}})\) we have

$$\begin{aligned}&\displaystyle \rho \varphi (y) - \mathcal{L}\varphi (y) > \delta , \end{aligned}$$
(4.9)
$$\begin{aligned}&\displaystyle \frac{\partial \varphi }{\partial x}(y)- 1 > \delta , \end{aligned}$$
(4.10)
$$\begin{aligned}&\displaystyle v_N^u(y) - G_{N-1}(y) > \delta . \end{aligned}$$
(4.11)

We know that there exists a sequence \(({\bar{x}}_m,{\bar{s}}_m)_{m\in \mathbb {N}}\) such that

$$\begin{aligned} \lim _{m\rightarrow +\infty }({\bar{x}}_m,{\bar{s}}_m)=({\bar{x}},{\bar{s}}) \quad \text {and}\quad \lim _{m\rightarrow +\infty }v_N ({\bar{x}}_m,{\bar{s}}_m, {\bar{q}}) = v_N^u({\bar{x}},{\bar{s}}, {\bar{q}}). \end{aligned}$$

Let \({\bar{y}}_m \,\,{:=}\,\, ({\bar{x}}_m, {\bar{s}}_m, {\bar{q}}) \in {B}_{\varepsilon }({\bar{y}}).\) For any admissible control \(\alpha =((\tau _i,q_i)_{i\ge 1},Z)\), consider the exit time \(\tau _{\varepsilon }^m=\inf \{t \ge 0, Y^{{\bar{y}}_m}_{t} \not \in {\bar{B}}_{\varepsilon }({\bar{y}})\}\). We notice that \(\tau _{\varepsilon }^m< T\). Applying Itô’s formula to the process \(e^{-\rho t}\varphi (Y_{t}^{{\bar{y}}_m})\) between 0 and \((\tau _{\varepsilon }^m\wedge \tau _1)^{-}\) and by noting that before \((\tau _{\varepsilon }^m\wedge \tau _1)^{-}\), \(Y_{t}^{{\bar{y}}_m}\) stays in the ball \({\bar{B}}_{\varepsilon }({\bar{y}})\), we obtain

$$\begin{aligned} \mathbb {E}\Big [e^{-\rho (\tau _{\varepsilon }^m\wedge \tau _1)^{-}}\varphi (Y_{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}^{{\bar{y}}_m})\Big ]= & {} \varphi ({\bar{y}}_m)+ \mathbb {E}\Big [ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,(-\rho \varphi + \mathcal{L}\varphi )(Y_{t}^{{\bar{y}}_m})dt\Big ]\nonumber \\&-\;\mathbb {E}\Big [ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,\frac{\partial \varphi }{\partial x}(Y_{t}^{{\bar{y}}_m})dZ^{c}_{t}\Big ]\nonumber \\&+\;\mathbb {E}\left[ \sum _{0 \le t < \tau _{\varepsilon }^m \wedge \tau _1} e^{-\rho t}[\varphi (Y_{t}^{{\bar{y}}_m})-\varphi (Y_{t^{-}}^{{\bar{y}}_m})]\right] . \end{aligned}$$
(4.12)

From Taylor’s formula and (4.10), and noting that \(\Delta X_{t}^{{\bar{x}}}=-\Delta Z_t\) for all \(0 \le t < \tau _{\varepsilon }^m\wedge \tau _1\), we have

$$\begin{aligned} \varphi (Y_{t}^{{\bar{y}}_m})-\varphi (Y_{t^{-}}^{{\bar{y}}_m}) = \Delta X_{t}^{{\bar{x}}}\,\frac{\partial \varphi }{\partial x}(Y_{t^{-}}^{{\bar{y}}_m}) \le -(1+\delta )\Delta Z_t. \end{aligned}$$
(4.13)

Plugging the relations (4.9), (4.10) and (4.13) into (4.12), we obtain

$$\begin{aligned} \varphi ({\bar{y}}_m)\ge & {} \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t + e^{-\rho (\tau _{\varepsilon }^m\wedge \tau _1)^{-}}\varphi (Y_{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}^{{\bar{y}}_m})\right] \nonumber \\&+\, \delta \left( \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dt\right] +\mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t\right] \right) \nonumber \\\ge & {} \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t + e^{-\rho \tau _{\varepsilon }^{m-}}\varphi (Y_{\tau _{\varepsilon }^{m-}}^{{\bar{y}}_m})1_{\tau _{\varepsilon }^m< \tau _1}+e^{-\rho \tau _{1}^{-}}\varphi (Y_{\tau _{1}^{-}}^{{\bar{y}}_m})1_{\tau _{1}\le \tau _{\varepsilon }^m}\right] \nonumber \\&+\, \delta \left( \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dt\right] +\mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t\right] \right) . \end{aligned}$$
(4.14)

First step On \(\{\tau _{\varepsilon }^m < \tau _1\}\), we notice that while \(Y_{\tau _{\varepsilon }^{m-}}^{{\bar{y}}_m} \in {\bar{B}}_{\varepsilon }({\bar{y}})\), \(Y_{\tau _{\varepsilon }^m}^{{\bar{y}}_m}\) is either on the boundary \(\partial {\bar{B}}_{\varepsilon }({\bar{y}})\) or out of \({\bar{B}}_{\varepsilon }({\bar{y}})\). However, there is some random variable \(\gamma \) valued in [0, 1] s.t.

$$\begin{aligned} X^{(\gamma )} \,\,{:=}\,\, X_{\tau _{\varepsilon }^{m-}}^{{\bar{x}}_m} + \gamma \Delta X_{\tau _{\varepsilon }^m}^{{\bar{x}}_m},= X_{\tau _{\varepsilon }^{m-}}^{{\bar{x}}_m}- \gamma \Delta Z_{\tau _{\varepsilon }^m} \in \{{\bar{x}}-\varepsilon ,{\bar{x}}+\varepsilon \}, \end{aligned}$$

hence, \(Y^{(\gamma )}\,\,{:=}\,\,(X^{(\gamma )},S_{\tau _{\varepsilon }^m}^{{\bar{s}}_m},Q_{\tau _{\varepsilon }^m}^{{\bar{q}}})\) is on the boundary \(\partial {\bar{B}}_{\varepsilon }({\bar{y}})\).

Following the same arguments as in (4.13), we have

$$\begin{aligned} \varphi (Y^{(\gamma )})-\varphi (Y_{\tau _{\varepsilon }^{m-}}^{{\bar{y}}_m}) \le -\gamma (1+\delta ) \Delta Z_{\tau _{\varepsilon }^m}. \end{aligned}$$
(4.15)

Noting that \(X^{(\gamma )} = X_{\tau _{\varepsilon }^m}^{{\bar{x}}_m}+(1-\gamma ) \Delta Z_{\tau _{\varepsilon }}\), we have

$$\begin{aligned} v_N^u(Y^{(\gamma )}) \ge v_N^u(Y_{\tau _{\varepsilon }^m}^{{\bar{y}}_m}) +(1-\gamma ) \Delta Z_{\tau _{\varepsilon }^m}. \end{aligned}$$
(4.16)

Recalling that \(\varphi (Y^{(\gamma )}) \ge v_N^u(Y^{(\gamma )}) \), inequalities (4.15) and (4.16) imply

$$\begin{aligned} \varphi (Y_{\tau _{\varepsilon }^{m-}}^{{\bar{y}}_m}) \ge v_N^u(Y_{\tau _{\varepsilon }^m}^{{\bar{y}}_m}) +(1+\gamma \delta ) \Delta Z_{\tau _{\varepsilon }^m}. \end{aligned}$$
(4.17)

Second step On \(\{\tau _1 \le \tau _{\varepsilon }^m\}\), we notice that \(Y_{\tau _{1}^{-}}^{{\bar{y}}_m} \in {\bar{B}}_{\varepsilon }({\bar{y}})\), thus \(v_N^u(Y_{\tau _{1}^{-}}^{{\bar{y}}_m}) \le \varphi (Y_{\tau _{1}^{-}}^{{\bar{y}}_m})\). From the assumption (4.11) we obtain

$$\begin{aligned} \varphi (Y_{\tau _{1}^{-}}^{{\bar{y}}_m})\ge & {} G_{N-1}(Y_{\tau _{1}^{-}}^{{\bar{y}}_m})+ \delta . \end{aligned}$$
(4.18)

Plugging (4.17) and (4.18) into (4.14) we have

$$\begin{aligned} \varphi ({\bar{y}}_m)\ge & {} \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t + e^{-\rho \tau _{\varepsilon }^m}v_N^u(Y_{\tau _{\varepsilon }^m}^{{\bar{y}}_m})1_{\tau _{\varepsilon }< \tau _1}+ e^{-\rho \tau _{1}}G_{N-1}(Y_{\tau _{1}^{-}}^{{\bar{y}}_m})1_{\tau _{1}\le \tau _{\varepsilon }^m}\right] \nonumber \\&+\, \delta \, \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dt+\, \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t+\gamma e^{-\rho \tau _{\varepsilon }^m}\Delta Z_{\tau _{\varepsilon }^m}1_{\tau _{\varepsilon }< \tau _1}\right. \nonumber \\&\left. +\, e^{-\rho \tau _{1}}1_{\tau _{1}\le \tau _{\varepsilon }^m}\right] + \mathbb {E}\Big [e^{-\rho \tau _{\varepsilon }^m}\Delta Z_{\tau _{\varepsilon }^m}1_{\tau _{\varepsilon }^m< \tau _1}\Big ]. \end{aligned}$$
(4.19)

We now claim that there exists a constant \(c_0 >0\) such that for any admissible control

$$\begin{aligned} c_0\le & {} \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dt+ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t\right] \nonumber \\&+\,\mathbb {E}\Big [\gamma e^{-\rho \tau _{\varepsilon }^m}\Delta Z_{\tau _{\varepsilon }^m}1_{\tau _{\varepsilon }^m< \tau _1}+e^{-\rho \tau _{1}}1_{\tau _{1}\le \tau _{\varepsilon }^m}\Big ]. \end{aligned}$$
(4.20)

The \(C^2\) function \(\psi (x,s,q)=c_0[1-\frac{(x-{\bar{x}}_m)^{2}}{\varepsilon ^2}]\), with

$$\begin{aligned} 0 < c_0 \le \min \left\{ \left( \rho +\frac{4}{\varepsilon }(r({\bar{x}}_m+\varepsilon )+bH)+\frac{\eta ^2}{\varepsilon ^2}H^2\right) ^{-1},\frac{\varepsilon }{2} \right\} \end{aligned}$$

satisfies

$$\begin{aligned} \left\{ \begin{array}{l} \min \left\{ -\rho \psi (x,s,q) + \mathcal{L}\psi (x,s,q)+1; -\frac{\partial \psi }{\partial x}(x,s,q)+ 1;\right. \\ \qquad \quad \left. -\psi (x,s,q) +1 \right\} \ge 0\text { on }{\bar{B}}_{\varepsilon }({\bar{y}}),\\ \psi (x,s,q) = 0\;\text {on}\; \partial {\bar{B}}_{\varepsilon }({\bar{y}}). \end{array}\right. \end{aligned}$$
(4.21)

Applying Itô’s formula, we then obtain

$$\begin{aligned} 0< c_0 =\psi ({\bar{y}}_m)\le & {} \mathbb {E}\left[ e^{-\rho (\tau _{\varepsilon }^m\wedge \tau _1)^{-}}\psi (Y_{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}^{{\bar{y}}_m})\right] \nonumber \\&+\,\mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dt+ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t\right] . \end{aligned}$$
(4.22)

Noting that \(\frac{\partial \psi }{\partial x}(x,s,q)\le 1\), we have

$$\begin{aligned} \psi (Y_{\tau _{\varepsilon }^{m-}}^{{\bar{y}}_m})-\psi (Y^{(\gamma )}) \le X_{\tau _{\varepsilon }^{m-}}^{{\bar{x}}_m}-X^{(\gamma )}=\gamma \Delta Z_{\tau _{\varepsilon }^m}. \end{aligned}$$

Plugging into (4.22), we obtain

$$\begin{aligned} 0< c_0\le & {} \mathbb {E}\left[ e^{-\rho \tau _{1}}\psi (Y_{\tau _1^{-}}^{{\bar{y}}_m})1_{\tau _1 \le \tau _{\varepsilon }^m }\right] +\mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dt\right] \nonumber \\&+\, \mathbb {E}\left[ \int _0^{(\tau _{\varepsilon }^m\wedge \tau _1)^{-}}e^{-\rho t}\,dZ_t \right] + \mathbb {E}\left[ e^{-\rho \tau _{\varepsilon }^m}\gamma \Delta Z_{\tau _{\varepsilon }^m}1_{ \tau _{\varepsilon }^m < \tau _1 }\right] . \end{aligned}$$
(4.23)

Since \(\psi \le 1\) for all \(y \in {\bar{B}}_{\varepsilon }({\bar{y}})\), this proves the claim (4.20).

Finally, by taking the supremum over all admissible control \(\alpha \), and using the dynamic programming principle (3.16), Eq. (4.19) implies that \(\varphi ({\bar{y}}_m) \ge v_N^u({\bar{y}}_m) + \delta c_0\), which leads to a contradiction when m goes to infinity. Thus we obtain the required viscosity subsolution property:

$$\begin{aligned} \min \left\{ \rho \varphi ({\bar{x}},{\bar{s}},{\bar{q}}) - \mathcal{L}\varphi ({\bar{x}},{\bar{s}},{\bar{q}}); \frac{\partial \varphi }{\partial x}({\bar{x}},{\bar{s}},{\bar{q}})- 1; v_N^u({\bar{x}},{\bar{s}},{\bar{q}})-G_{N-1}({\bar{x}},{\bar{s}},{\bar{q}}) \right\} \le 0.\nonumber \\ \end{aligned}$$
(4.24)

\(\square \)

Proof of Lemma 3.4:

Step 1 We first construct a strict supersolution to the system with suitable perturbation of w. We set

$$\begin{aligned} g(y)=A + B(x+sq+1) + D(x+sq+1)^p,\quad p\in (1,2), \quad y\in \mathcal{S}, \end{aligned}$$

where

$$\begin{aligned} A=\frac{BHb+bH+1 }{\rho } + C_1 + C_3 \kappa , \quad B=2\quad \hbox {and}\quad D=B\Big (\frac{\rho -\max (r,\mu )}{2Hb}\Big ). \end{aligned}$$

We then define for all \(\gamma \in (0,1)\), the lower semi-continuous function on \((0,+\infty )^2\times \mathbb {N}\) by:

$$\begin{aligned} w^{\gamma }=(1-\gamma )w+\gamma g. \end{aligned}$$

Let \(y\in (0,+\infty )^2\times \mathbb {N}\). For all \(\gamma \in (0,1)\), we then see that :

$$\begin{aligned} w^{\gamma }(y)-G_{N-1}(y)\ge & {} (1-\gamma )\Big (w(y)-G_{N-1}(y)\Big ) + \gamma \Big (g(y)-G_{N-1}(y)\Big )\nonumber \\\ge & {} \gamma \kappa , \end{aligned}$$
(4.25)

where the last inequality comes from the facts that as a supersolution \(w(y)\ge G_{N-1}(y)\) and that for all \(n \in \mathcal{A}(y)\), Corollary 3.1 implies that:

$$\begin{aligned} v_{N-1}\Big (\Gamma (y,n)\Big )\le & {} x - \kappa -nsf(n)+s(q+n)+\frac{bH}{\rho }\nonumber \\\le & {} \frac{bH}{\rho }+(x+sq+1)+sn(1-f(n))-\kappa \nonumber \\\le & {} g(y)-\kappa . \end{aligned}$$
(4.26)

Furthermore, we also easily obtain

$$\begin{aligned} \frac{\partial g}{\partial x}(y)- 1=B + p(x + sq +1)^{p-1}-1\ge 1. \end{aligned}$$
(4.27)

Recalling that \(h(q)\le H\) for all \(q\in \mathbb {N}\), a straight calculation gives

$$\begin{aligned} \rho g(y)-\mathcal{L}g(y)= & {} \rho \Big (A +B (x+sq+1) + D(x + sq +1)^{p}\Big )\\&-\,Dc \sigma h(q)\eta q s p(p-1)(x + sq +1)^{p-2}\\&-\,\frac{\eta ^2 h^2(q)}{2}D p(p-1)(x + sq +1)^{p-2}\\&-\,\frac{s^2 q^2\sigma ^2}{2}D p(p-1)(x + sq +1)^{p-2}\\&-\,\Big (rx+bh(q)\Big )\Big (B+Dp(x+sq+1)^{p-1}\Big )\\&-\,\mu s\Big (Bq+Dqp(x+sq+1)^{p-1}\Big )\\\ge & {} \rho A -B b H + B\Big (\rho -\max (r,\mu )\Big )(x+sq+1)\\&-\,Dc \sigma H\eta p(p-1)(x + sq +1)^{p}\\&-\,D\frac{\eta ^2 H^2}{2}p(p-1)(x + sq +1)^{p}\\&-\,D\frac{\sigma ^2}{2}p(p-1)(x + sq +1)^{p}\\&-\,D b H p (x + sq +1)^{p-1}\\&-\,D\max (r,\mu )p(x + sq +1)^{p}+D\rho (x + sq +1)^{p}\\\ge & {} \rho A -B b H +(x+sq+1)\\&\times \Big (B\Big (\rho -\max (r,\mu )\Big )-D b H p(x+sq+1)^{p-2}\Big )\\&+\,D\left( \rho -\max (r,\mu )p-\left( \frac{\eta ^2 H^2}{2}+\frac{\sigma ^2}{2}+c \sigma H\eta \right) p(p-1)\right) (x+sq+1)^{p}. \end{aligned}$$

Using that \(p(x + sq +1)^{p-2}\le 2\) for all \(p\in (1,2)\) and replacing A by its value, we obtain

$$\begin{aligned} \rho g(y)-\mathcal{L}g(y)\ge & {} 1 + (x+sq+1)\Big (B(\rho -\max (r,\mu ))-2DbH\Big )\nonumber \\&+\,D\left( \rho -\max (r,\mu )p-\left( \frac{\eta ^2 H^2}{2}+\frac{\sigma ^2}{2}+c \sigma H\eta \right) p(p-1)\right) (x+sq+1)^{p}.\nonumber \end{aligned}$$

Recalling that \(\rho > \max (r,\mu )\), we can choose \(p\in (1,2)\) s.t.

$$\begin{aligned} \xi \,\,{:=}\,\,\rho -\max (r,\mu )p-\left( \frac{\eta ^2 H^2}{2}+\frac{\sigma ^2}{2}+c \sigma H\eta \right) p(p-1)>0, \end{aligned}$$

we then have

$$\begin{aligned} \rho g(y)-\mathcal{L}g(y)\ge & {} 1 + D\xi (x + sq +1)^{p}, \quad \forall y \in (0,+\infty )^2\times \mathbb {N}. \end{aligned}$$
(4.28)

Combining (4.26), (4.27) and (4.28), we obtain that \(w^{\gamma }\) is a strict supersolution of Eq. (3.15): \(\forall y \in (0,+\infty )^2\times \mathbb {N}\), we have

$$\begin{aligned} \min \left\{ \rho w^{\gamma }(y) - \mathcal{L}w^{\gamma }(y); \frac{\partial w^{\gamma }}{\partial x}(y){\!}{\!}- {\!}{\!}1; w^{\gamma }(y)-G_{N-1}(y) \right\} \ge \gamma \min (1,\kappa )&\,\,{:=}\,\,&\delta .\nonumber \\ \end{aligned}$$
(4.29)

Step 2 In order to prove the comparison principle, it suffices to show that for all \(\gamma \in (0,1)\):

$$\begin{aligned} \sup _{y\in (0,+\infty )^2\times \mathbb {N}}{(u-w^{\gamma })}\le 0, \end{aligned}$$

since the required result is obtained by letting \(\gamma \) to 0. We argue by contradiction and suppose that there exist some \(\gamma \in (0,1)\) s.t.

$$\begin{aligned} \theta \,\,{:=}\,\,\sup _{y\in (0,+\infty )^2\times \mathbb {N}}{(u-w^{\gamma })}>0. \end{aligned}$$
(4.30)

Notice that \(u(y)-w^{\gamma }(y)\) goes to \(-\infty \) as x, s and q go to infinity. For any \({\bar{y}}\in \{0\}\times (0,+\infty )\times \mathbb {N}\), we also have

$$\begin{aligned} \limsup _{y\rightarrow {\bar{y}}}u(y)- w^{\gamma }(y)\le \gamma (\liminf _{y\rightarrow {\bar{y}}}w(y)-A)\le 0. \end{aligned}$$

Hence, by semi-continuity of the functions u and \(w^{\gamma }\), there exists \(y_0=(x_0,s_0,q_0)\in (0,+\infty )^2\times \mathbb {N}\) s.t.

$$\begin{aligned} \theta =u(y_0)-w^{\gamma }(y_0). \end{aligned}$$

For any \(\varepsilon >0\), we consider the the functions

$$\begin{aligned} \Phi _{\varepsilon }(y,y')= & {} u(y)-w^{\gamma }(y')-\varphi _{\varepsilon }(y,y')\\ \varphi _{\varepsilon }(y,y')= & {} \frac{1}{4}|y-y_0|^4+\frac{1}{2\varepsilon }|y-y'|^2, \end{aligned}$$

for all y, \(y'\) \(\in \mathcal{S}\). By standard arguments in comparison principle, the function \(\Phi _{\varepsilon }\) attains its maximum in \((y_{\varepsilon },y'_{\varepsilon })\in ((0,+\infty )^2\times \mathbb {N})^2\), which converges (up to a subsequence) to \((y_0,y_0)\) when \(\varepsilon \) goes to zero. Moreover,

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0}{\frac{|y_{\varepsilon }-y_{\varepsilon }'|^2}{\varepsilon }}=0. \end{aligned}$$
(4.31)

Applying Theorem 3.2 in [9], we get the existence of two \(2\times 2\) symmetric matrices \(M^{\varepsilon }\) and \(N^{\varepsilon }\) s.t.:

$$\begin{aligned} (p^{\varepsilon },M^{\varepsilon })\in & {} J^{2,+}u(y_{\varepsilon }),\\ (d^{\varepsilon },N^{\varepsilon })\in & {} J^{2,-}w^{\gamma }(y'_{\varepsilon }), \end{aligned}$$

and

$$\begin{aligned} \left( \begin{array}{cc} M^{\varepsilon }&{} 0\\ 0&{}-N^{\varepsilon }\\ \end{array}\right) \le D_{y,y'}^2\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })+ \varepsilon \Big (D_{y,y'}^2\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })\Big )^2, \end{aligned}$$
(4.32)

where

$$\begin{aligned}&\displaystyle p^{\varepsilon } = D_y\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })=\left( \begin{array}{c} (x_{\varepsilon }-x_0)|y_{\varepsilon }-y_0|^2+\frac{1}{\varepsilon }(x_{\varepsilon }-x'_{\varepsilon })\\ (s_{\varepsilon }-s_0)|y_{\varepsilon }-y_0|^2+\frac{1}{\varepsilon }(s_{\varepsilon }-s'_{\varepsilon })\\ \end{array}\right) \\&\displaystyle d^{\varepsilon } = -D_{y'}\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })=\left( \begin{array}{c} \frac{1}{\varepsilon }(x_{\varepsilon }-x'_{\varepsilon })\\ \frac{1}{\varepsilon }(s_{\varepsilon }-s'_{\varepsilon })\\ \end{array}\right) ,\\&\displaystyle D_{y,y'}^2\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })= \left( \begin{array}{cccc} 2(x_{\varepsilon }-x_0)^2+|y_{\varepsilon }-y_0|^2+\frac{1}{\varepsilon }&{} 2(x_{\varepsilon }-x_{0})(s_{\varepsilon }-s_{0})&{} \frac{-1}{\varepsilon }&{} 0\\ 2(x_{\varepsilon }-x_{0})(s_{\varepsilon }-s_{0})&{} 2(s_{\varepsilon }-s_0)^2+|y_{\varepsilon }-y_0|^2+\frac{1}{\varepsilon }&{} 0&{} \frac{-1}{\varepsilon }\\ \frac{-1}{\varepsilon }&{} 0&{} \frac{1}{\varepsilon }&{} 0\\ 0&{} \frac{-1}{\varepsilon }&{} 0&{}\frac{1}{\varepsilon }\\ \end{array}\right) . \end{aligned}$$

By writing the viscosity subsolution property of u and the viscosity supersolution property (4.29) of \(w^{\gamma }\), we have the following inequalities:

$$\begin{aligned}&\min \left\{ \rho u(y_{\varepsilon })-\Big (rx_{\varepsilon }+bh(q_{\varepsilon })\Big )p^{\varepsilon }_{1}-\mu s_{\varepsilon }p^{\varepsilon }_{2}-c\sigma \eta s_{\varepsilon }h(q_{\varepsilon })M^{\varepsilon }_{12}-\frac{\eta ^2h^2(q_{\varepsilon })}{2}M^{\varepsilon }_{11}\right. \nonumber \\&\left. \quad \qquad -\frac{\sigma ^2s_{\varepsilon }^2}{2}M^{\varepsilon }_{22};p^{\varepsilon }_{1}-1;u(y_{\varepsilon })-G_{N-1}(y_{\varepsilon })\right\} \le 0 \end{aligned}$$
(4.33)
$$\begin{aligned}&\min \left\{ \rho w^{\gamma }(y'_{\varepsilon })-\Big (rx'_{\varepsilon }+b h(q'_{\varepsilon })\Big )d^{\varepsilon }_{1}-\mu s'_{\varepsilon }d^{\varepsilon }_{2}-c\sigma \eta s'_{\varepsilon }h(q'_{\varepsilon })N^{\varepsilon }_{12}-\frac{\eta ^2h^2(q'_{\varepsilon })}{2}N^{\varepsilon }_{11}\right. \nonumber \\&\left. \quad \qquad -\frac{\sigma ^{2}(s'_{\varepsilon })^2}{2}N^{\varepsilon }_{22};d^{\varepsilon }_{1}-1;w^{\gamma }(y'_{\varepsilon })-G_{N-1}(y'_{\varepsilon })\right\} \ge \delta \end{aligned}$$
(4.34)

We then distinguish three cases:

  • Case 1 \(u(y_{\varepsilon })-G_{N-1} (y_{\varepsilon })\le 0\) in (4.33). From the definition of \((y_{\varepsilon },y_{\varepsilon }^\prime )\), we have

    $$\begin{aligned} \theta= & {} u(y_0)-w^\gamma (y_0)\\\le & {} u(y_\varepsilon )-w^\gamma (y_\varepsilon ^\prime )-\varphi _\varepsilon (y_\varepsilon ,y^\prime _\varepsilon )\\\le & {} G_{N-1}(y_\varepsilon )-G_{N-1}(y^\prime _\varepsilon )-\delta -\varphi _\varepsilon (y_\varepsilon ,y^\prime _\varepsilon ). \end{aligned}$$

    Now, letting \(\varepsilon \) going to 0, we deduce from Eq. (4.31) and the continuity of \(G_{N-1}\) that \(0<\theta \le -\delta <0,\) which is obviously a contradiction.

  • Case 2 \((x_{\varepsilon }-x_0)|y_{\varepsilon }-y_0|^2+\frac{1}{\varepsilon }(x_{\varepsilon }-x'_{\varepsilon }) -1=p^{\varepsilon }_{1}-1\le 0\) in (4.33). Notice by (4.34), we have

    $$\begin{aligned} \frac{1}{\varepsilon }(x_{\varepsilon }-x'_{\varepsilon })-1=d^{\varepsilon }_{1}-1\ge \delta , \end{aligned}$$

    which implies in this case

    $$\begin{aligned} (x_{\varepsilon }-x_0)|y_{\varepsilon }-y_0|^2\le -\delta . \end{aligned}$$

    By sending \(\varepsilon \) to zero, we obtain again a contradiction.

  • Case 3 \(\rho u(y_{\varepsilon })-(rx_{\varepsilon }+bh(q_{\varepsilon }))p^{\varepsilon }_{1}-\mu s_{\varepsilon }p^{\varepsilon }_{2}-c\sigma \eta s_{\varepsilon }h(q_{\varepsilon })M^{\varepsilon }_{12}-\frac{\eta ^2h^2(q_{\varepsilon })}{2}M^{\varepsilon }_{11} -\frac{\sigma ^2s_{\varepsilon }^2}{2}M^{\varepsilon }_{22}\le 0\) in (4.33).

From (4.34), we have

$$\begin{aligned}&\rho w^{\gamma }(y'_{\varepsilon })-\Big (rx'_{\varepsilon }+b h(q'_{\varepsilon })\Big )d^{\varepsilon }_{1}-\mu s'_{\varepsilon }d^{\varepsilon }_{2}\nonumber \\&-c\sigma \eta s'_{\varepsilon }h(q'_{\varepsilon })N^{\varepsilon }_{12}-\frac{\eta ^2h^2(q'_{\varepsilon })}{2}N^{\varepsilon }_{11} -\frac{\sigma ^{2}(s'_{\varepsilon })^2}{2}N^{\varepsilon }_{22}\ge \delta , \end{aligned}$$

which implies in this case

$$\begin{aligned}&\rho \Big (u(y_{\varepsilon })-w^{\gamma }(y'_{\varepsilon })\Big ) -r(x_{\varepsilon }p^{\varepsilon }_{1}-x'_{\varepsilon }d^{\varepsilon }_{1}) -b(h(q_{\varepsilon })p^{\varepsilon }_{1}-h(q'_{\varepsilon })d^{\varepsilon }_{1}) -\mu (s_{\varepsilon }p^{\varepsilon }_{1}-s'_{\varepsilon }d^{\varepsilon }_{1})\nonumber \\&\quad -\,c\sigma \eta (s_{\varepsilon }h(q_{\varepsilon })M^{\varepsilon }_{12}-s'_{\varepsilon }h(q'_{\varepsilon })N^{\varepsilon }_{12}) -\frac{\eta ^2}{2}(h^2(q_{\varepsilon })M^{\varepsilon }_{11}-h^2(q'_{\varepsilon })N^{\varepsilon }_{11})\nonumber \\&\quad -\frac{\sigma ^2}{2}\Big ((s_{\varepsilon })^{2}M^{\varepsilon }_{22}-(s'_{\varepsilon })^{2}N^{\varepsilon }_{22}\Big )\le -\delta \end{aligned}$$
(4.35)

We have that

$$\begin{aligned} x_{\varepsilon }p^{\varepsilon }_{1}-x'_{\varepsilon }d^{\varepsilon }_{1}= x_{\varepsilon }(x_{\varepsilon }-x_0)|y_{\varepsilon }-y_0|^2+\frac{1}{\varepsilon }(x_{\varepsilon }-x'_{\varepsilon })^2. \end{aligned}$$

From (4.31) we have that this last quantity goes to zero when \(\varepsilon \) goes to zero. Using the same argument, we also have that the quantity \(s_{\varepsilon }p^{\varepsilon }_{1}-s'_{\varepsilon }d^{\varepsilon }_{1}\) goes to zero when \(\varepsilon \) goes to zero.

Using that \(h(q)\le H\) for all \(q\in \mathbb {N}\) we have

$$\begin{aligned} h(q_{\varepsilon })p^{\varepsilon }_{1}-h(q'_{\varepsilon })d^{\varepsilon }_{1}\le & {} h(q_{\varepsilon })(x_{\varepsilon }-x_0)|y_{\varepsilon }-y_0|^2 +\frac{1}{\varepsilon }(x_{\varepsilon }-x'_{\varepsilon })\Big (h(q_{\varepsilon })-h(q'_{\varepsilon })\Big )\\\le & {} h(q_{\varepsilon })(x_{\varepsilon }-x_0)|y_{\varepsilon }-y_0|^2 +H\frac{(x_{\varepsilon }-x'_{\varepsilon })^2+(q_{\varepsilon }-q'_{\varepsilon })^2}{\varepsilon }. \end{aligned}$$

Again, by (4.31), this last quantity goes to zero when \(\varepsilon \) goes to zero.

Moreover, assuming that \(c\ne 0\), from (4.32), we have

$$\begin{aligned}&c\sigma \eta (s_{\varepsilon }h(q_{\varepsilon })M^{\varepsilon }_{12}-s'_{\varepsilon }h(q'_{\varepsilon })N^{\varepsilon }_{12}) +\frac{\eta ^2}{2}(h^2(q_{\varepsilon })M^{\varepsilon }_{11}-h^2(q'_{\varepsilon })N^{\varepsilon }_{11})\nonumber \\&\quad +\frac{c^2\sigma ^2}{2}\Big ((s_{\varepsilon })^{2}M^{\varepsilon }_{22}-(s'_{\varepsilon })^{2}N^{\varepsilon }_{22}\Big )\le \Upsilon \end{aligned}$$
(4.36)

where

$$\begin{aligned} \Upsilon =\Lambda \Big (D_{y,y'}^2\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })+ \varepsilon \Big (D_{y,y'}^2\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })\Big )^2\Big )\Lambda ^{\intercal } \end{aligned}$$

with

$$\begin{aligned} \Lambda =\frac{1}{\sqrt{2}}\Big (\eta h(q_{\varepsilon }),c\sigma s_{\varepsilon },\eta h(q'_{\varepsilon }),c\sigma s'_{\varepsilon }\Big )^{\intercal } \end{aligned}$$

Here \(\intercal \) denotes the transpose operator.

From (4.32), we have also

$$\begin{aligned} \frac{c^2\sigma ^2}{2}\Big ((s_{\varepsilon })^{2}M^{\varepsilon }_{22}-(s'_{\varepsilon })^{2}N^{\varepsilon }_{22}\Big )\le {\bar{\Upsilon }} \end{aligned}$$
(4.37)

where

$$\begin{aligned} {\bar{\Upsilon }}={\bar{\Lambda }}\Big (D_{y,y'}^2\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })+ \varepsilon \Big (D_{y,y'}^2\varphi _{\varepsilon }(y_{\varepsilon },y'_{\varepsilon })\Big )^2\Big ){\bar{\Lambda }}^{\intercal } \end{aligned}$$

with

$$\begin{aligned} {\bar{\Lambda }}=\frac{1}{\sqrt{2}}\Big (0,c\sigma s_{\varepsilon },0,c\sigma s'_{\varepsilon }\Big )^{\intercal } \end{aligned}$$

Combining (4.36) and (4.37) and the fact that \(-1 \le c\le 1\), we obtain

$$\begin{aligned}&c\sigma \eta (s_{\varepsilon }h(q_{\varepsilon })M^{\varepsilon }_{12}-s'_{\varepsilon }h(q'_{\varepsilon })N^{\varepsilon }_{12}) +\frac{\eta ^2}{2}(h^2(q_{\varepsilon })M^{\varepsilon }_{11}-h^2(q'_{\varepsilon })N^{\varepsilon }_{11})\nonumber \\&+\frac{\sigma ^2}{2}\Big ((s_{\varepsilon })^{2}M^{\varepsilon }_{22}-(s'_{\varepsilon })^{2}N^{\varepsilon }_{22}\Big )\le \Upsilon + \frac{1-c^2}{c^2}{\bar{\Upsilon }}. \end{aligned}$$

After some straightforward calculations and using (4.31) and that \(h(q)\le H\) for all \(q\in \mathbb {N}\), we have that \(\Upsilon \) and \({\bar{\Upsilon }}\) go to zero when \(\varepsilon \) goes to zero.

The case of \(c=0\) is treated in the same way by choosing \(\Lambda =\frac{1}{\sqrt{2}}(\eta h(q_{\varepsilon }),0,\eta h(q'_{\varepsilon }),0)^{\intercal }\) and \({\bar{\Lambda }}=\frac{1}{\sqrt{2}}(0,\sigma s_{\varepsilon },0,\sigma s'_{\varepsilon })^{\intercal }\).

Finally, using all the above arguments and the continuity of u and \(w^{\gamma }\) we can see that when \(\varepsilon \) goes to zero in the inequality (4.35), we obtain the required contradiction: \(\rho \theta \le -\delta <0\). This ends the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, E., Gaïgi, M. & Ly Vath, V. Liquidity risk and optimal dividend/investment strategies. Math Finan Econ 11, 111–135 (2017). https://doi.org/10.1007/s11579-016-0173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-016-0173-9

Keywords

Mathematics Subject Classification

JEL Classification

Navigation