Skip to main content
Log in

Attaining the recesses of the cognitive space

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Existing neuropsychological tests of executive function often manifest a difficulty pinpointing cognitive deficits when these are intermittent and come in the form of omissions. We discuss the hypothesis that two partially interrelated reasons for this failure stem from relative inability of neuropsychological tests to explore the cognitive space and to explicitly take into account strategic and opportunistic resource allocation decisions, and to address the temporal aspects of both behaviour and task-related brain function in data analysis. Criteria for tasks suitable for neuropsychological assessment of executive function, as well as appropriate ways to analyse and interpret observed behavioural data are suggested. It is proposed that experimental tasks should be devised which emphasize typical rather than optimal performance, and that analyses should quantify path-dependent fluctuations in performance levels rather than averaged behaviour. Some implications for experimental neuropsychology are illustrated for the case of planning and problem-solving abilities and with particular reference to cognitive impairment in closed-head injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

No data are associated with this article.

Notes

  1. In a system with redundancy components are duplicated allowing the implementation of alternative functional channels when subparts of the system break down. Degeneracy refers to the ability of structurally different elements to carry out the same function (Tononi et al. 1999; Edelman and Gally, 2001).

  2. A system is controllable if a set of appropriate control signals can drive it from an arbitrary initial condition to any final condition in finite time. The control signal achieving such a goal may not be unique.

  3. When considering objects or phenomena with multiple scales, it is important to see how a given property of such entities varies as one observes it at different scales, e.g. at different spatial or temporal scales. The scaling properties characterise how these properties vary as the observation scale is varied.

References

  • Allegrini P, Menicucci D, Paradisi P, Gemignani A (2010) Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Front Physiol 1:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Allport DA (1993) Attention and control: have we been asking the wrong questions? A critical review of the last 25 years. In: Mayer DE, Kornblum S (eds) Attention and Performance XIV: A silver jubilee. M.I.T. Press, Cambridge, pp 183–219

    Google Scholar 

  • Alvarez JA, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16:17–42

    Article  PubMed  Google Scholar 

  • Anderson JR (1993) Rules of the mind. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Avci G, Sheppard DP, Tierney SM, Kordovski VM, Sullivan KL, Woods SP (2018) A systematic review of prospective memory in HIV disease: from the laboratory to daily life. Clin Neuropsychol 32:858–890

    Article  PubMed  Google Scholar 

  • Baronchelli A, Radicchi F (2013) Lévy flights in human behaviour and cognition. Chaos Soliton Fract 56:101–105

    Article  Google Scholar 

  • Bénichou O, Loverdo C, Moreau M, Voituriez R (2011) Intermittent search strategies. Rev Mod Phys 83:81

    Article  Google Scholar 

  • Bilder RM, Reise SP (2019) Neuropsychological tests of the future: how do we get there from here? Clin Neuropsychol 33:220–245

    Article  PubMed  Google Scholar 

  • Boccaletti S, Grebogi C, Lai YC, Mancini H, Maza D (2000) The control of chaos: theory and applications. Phys Rep 329:103–197

    Article  Google Scholar 

  • Brezina V (2010) Beyond the wiring diagram: signalling through complex neuromodulator networks. Phil Trans r Soc B 365:2363–2374

    Article  PubMed  PubMed Central  Google Scholar 

  • Brezina V, Weiss KR (1997) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543

    Article  CAS  PubMed  Google Scholar 

  • Burgess PW (1997) Theory and methodology in executive function research. In: Rabbitt P (ed) Methodology of frontal and executive function. Psychology Press, London, pp 81–116

    Google Scholar 

  • Burgess PW, Alderman N, Ernslie H, Evans J, Wilson BA (1998) The ecological validity of tests of executive function. J Int Neuropsychol Soc 4:547–558

    Article  CAS  PubMed  Google Scholar 

  • Burgess PW, Alderman N, Forbes C, Costello A, Coates LM, Dawson DR, Anderson ND, Gilbert SJ, Dumontheil I, Channon S (2006) The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. J Int Neuropsychol Soc 12:194–209

    Article  PubMed  Google Scholar 

  • Buiatti M, Papo D, Baudonnière PM, van Vreeswijk C (2007) Feedback modulates the temporal scalefree dynamics of brain electrical activity in a hypothesis testing task. Neurosci 146:1400–1412

  • Caeyenberghs K, Leemans A, Leunissen I, Gooijers J, Michiels K, Sunaert S et al (2014) Altered structural networks and executive deficits in traumatic brain injury patients. Brain Struct Func 219:193–209

    Article  CAS  Google Scholar 

  • Chan RC, Shum D, Toulopoulou T, Chen EY (2008) Assessment of executive functions: review of instruments and identification of critical issues. Arch Clin Neuropsychol 23:201–216

    Article  PubMed  Google Scholar 

  • Chaytor N, Schmitter-Edgecombe M (2003) The ecological validity of neuropsychological tests: a review of the literature on everyday cognitive skills. Neuropsychol Rev 13:181–197

    Article  PubMed  Google Scholar 

  • Chen Y, Mingzhou D, Kelso JAS (1997) Long memory processes (1/fα type) in human coordination. Phys Rev Lett 79:4501–4504

    Article  CAS  Google Scholar 

  • Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5:813–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper R, Shallice T (1997) Modelling the selection of routine action: Exploring the criticality of parameter values. In: Shafo MG, Largley P (eds) Proceedings of the 19th Annual Conference of the Cognitive Science Society (pp. 131–136). Erlbaum, Mahwah.

  • Cooper R, Shallice T (2000) Contention scheduling and the control of routine activities. Cogn Neuropsychol 17:297–338

    Article  CAS  PubMed  Google Scholar 

  • Coscoy S, Huguet E, Amblard F (2007) Statistical analysis of sets of random walks: how to resolve their generating mechanism. Bull Math Biol 69:2467–2492

    Article  PubMed  Google Scholar 

  • Costa AS, Dogan I, Schulz JB, Reetz K (2019) Going beyond the mean: intraindividual variability of cognitive performance in prodromal and early neurodegenerative disorders. Clin Neuropsychol 33:369–389

    Article  PubMed  Google Scholar 

  • Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168

    Article  PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  CAS  PubMed  Google Scholar 

  • Dunn JC, Kirsner K (2003) What can we infer from double dissociations? Cortex 39:1–7

    Article  PubMed  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98:13763–13768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Expert P, Lambiotte R, Chialvo DR, Christensen K, Jensen HJ, Sharp DJ, Turkheimer F (2010) Self-similar correlation function in brain resting-state functional magnetic resonance imaging. J R Soc Interface 8:472–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Fellows LK (2019) The functions of the frontal lobes: evidence from patients with focal brain damage. Handb Clin Neurol 163:19–34

    Article  PubMed  Google Scholar 

  • Flyvbjerg H (1996) Simplest possible self-organized critical system. Phys Rev Lett 76:940–943

    Article  CAS  PubMed  Google Scholar 

  • Fodor J (1983) The modularity of mind. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Fraiman D, Chialvo DR (2012) What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front Physiol 3:307

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzen MD, Wilhelm KL (1996) Conceptual foundations of ecological validity in neuropsychological assessment. In: Sbordone RJ, Long CJ (eds) Ecological validity of neuropsychological testing. St Lucie Press, Boca Raton, FL, pp 91–112

    Google Scholar 

  • Freeman WJ, Kozma R (2000) Local-global interactions and the role of mesoscopic (intermediate-range) elements in brain dynamics. Behav Brain Sci 23:400

    Article  Google Scholar 

  • Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (2009) Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J Neurosci 29:8512–8524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaurav G, Anand RS, Kumar V (2021) EEG based cognitive task classification using multifractal detrended fluctuation analysis. Cogn Neurodyn, pp 1–15.

  • Gigerenzer G, Hertwig R, Pachur T (eds) (2011) Heuristics: the foundations of adaptive behavior. Oxford University Press, New York, NY

    Google Scholar 

  • Gilden DL (2001) Cognitive emission of 1/f noise. Psychol Rev 108:33–56

    Article  CAS  PubMed  Google Scholar 

  • Gilden DL, Thornton T, Mallon MW (1995) 1/f noise in human cognition. Science 267:1837–1839

    Article  CAS  PubMed  Google Scholar 

  • Gioia GA, Isquith PK (2004) Ecological assessment of executive function in traumatic brain injury. Dev Neuropsychol 25:135–158

    Article  PubMed  Google Scholar 

  • Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng C-K, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci USA 99:2466–2472

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong P, Nikolaev AR, van Leeuwen C (2007) Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. Phys Rev E 76:011904.

  • Gutiérrez R, Sendiña-Nadal I, Zanin M, Papo D, Boccaletti S (2012) Targeting the dynamics of complex networks. Sci Rep 2:396

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez R, Materassi M, Focardi S, Boccaletti S (2020) Steering complex networks toward desired dynamics. Sci Rep 10:20744

  • Haken H (1983) Synergetics: an introduction, 3rd edn. Springer-Verlag, Berlin, Germany

    Book  Google Scholar 

  • Hausdorff JM, Peng C-K, Ladin Z, Wei JY, Goldberger AL (1995) Is walking a random walk? Evidence for long-range correlations in stride intervals of human gait. J Appl Physiol 78:349–358

    Article  CAS  PubMed  Google Scholar 

  • Howieson D (2019) Current limitations of neuropsychological tests and assessment procedures. Clin Neuropsychol 33:200–208

    Article  PubMed  Google Scholar 

  • Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, Sims DW (2012) Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci USA 109:7169–7174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O et al (2005) Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 103:298–303

    Article  PubMed  Google Scholar 

  • Jovanovski D, Zakzanis K, Campbell Z, Erb S, Nussbaum D (2012) Development of a novel, ecologically oriented virtual reality measure of executive function: the multitasking in the city test. Appl Neuropsychol Adult 19:171–182

    Article  PubMed  Google Scholar 

  • Kahneman D (1973) Attention and effort. Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge, MA

    Google Scholar 

  • Kelso JAS, Fuchs A (1995) Self-organizing dynamics of the human brain: critical instabilities and Šil’nikov chaos. Chaos 5:64–69

    Article  PubMed  Google Scholar 

  • Kinsella G (1998) Assessment of attention following traumatic brain injury: a review. Neuropsychol Rehabil 8:351–375

    Article  Google Scholar 

  • Koirala N, Fleischer V, Glaser M, Zeuner KE, Deuschl G, Volkmann J, Muthuraman M, Groppa S (2018) Frontal lobe connectivity and network community characteristics are associated with the outcome of subthalamic nucleus deep brain stimulation in patients with Parkinson’s disease. Brain Topogr 31:311–321

    Article  PubMed  Google Scholar 

  • Kostrubiec V, Zanone PG (2002) Memory dynamics: Distance between the new task and existing behavioural patterns affects learning and interference in bimanual coordination in humans. Neurosci Lett 331:193–197

    Article  CAS  PubMed  Google Scholar 

  • Kowalik ZJ, Schiepek G, Kumpf K, Roberts LE, Elbert T (1997) Psychotherapy as a chaotic process II. The application of nonlinear analysis methods on quasi time series of the client-therapist interaction: a nonstationary approach. Psychother Res 7:197–218

    Article  Google Scholar 

  • Kozma R, Freeman WJ (2016) Cognitive phase transitions in the cerebral cortex-enhancing the neuron doctrine by modeling neural fields. Springer International Publishing, Switzerland

    Book  Google Scholar 

  • Kozma R, Puljic M (2015) Random graph theory and neuropercolation for modeling brain oscillations at criticality. Curr Opin Neurobiol 31:181–188

    Article  CAS  PubMed  Google Scholar 

  • Lai YC (2014) Controlling complex, non-linear dynamical networks. Natl Sci Rev 1:339–341

    Article  Google Scholar 

  • Leroy F, Pezard L, Nandrino JL, Beaune D (2005) Dynamical quantification of schizophrenic speech. Psychiatry Res 133:159–171

    Article  PubMed  Google Scholar 

  • Levin HS, Goldstein FC, Williams DH, Eisenberg HM (1991) The contribution of frontal lobe lesions to the neurobehavioural outcome of closed head injury. In: Levin HS, Eisenberg HM, Benton AL (eds) Frontal lobe function and dysfunction (pp. 318–338). New York: Oxford University Press.

  • Levine B, Robertson IH, Clare L, Carter G, Hong J, Wilson BA, Duncan J, Stuss DT (2000) Rehabilitation of executive functioning: an experimental-clinical validation of goal management training. J Int Neuropsychol Soc 6:299–312

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Schweizer TA, O’Connor C, Turner G, Gillingham S, Stuss DT, Manly T, Robertson IH (2011) Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training. Front Hum Neurosci 5:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Lezak MD, Howieson DB, Bigler ED, Tranel D (2012) Neuropsychological assessment, 5th edn. Oxford University Press, USA

    Google Scholar 

  • Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi R (2001) Long-range temporal correlations and scaling behavior in human oscillations. J Neurosci 15:1370–1377

    Article  Google Scholar 

  • Linkenkaer‐Hansen K, Nikulin VV, Palva JM, Kaila K, Ilmoniemi RJ (2004) Stimulus-induced change in long-range temporal correlations and scaling behaviour of sensorimotor oscillations. Eur J Neurosci 19:203–211

  • Lipton ML, Gulko E, Zimmerman ME, Friedman BW, Kim M, Gellella E, Gold T, Shifteh K, Ardekani BA, Branch CA (2009) Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology 252:816–824

    Article  PubMed  Google Scholar 

  • Liu YY, Barabási A.L (2016) Control principles of complex systems. Rev Mod Phys 88:035006.

  • Lomholt M, Tal K, Metzler R, Joseph K (2008) Lévy strategies in intermittent search processes are advantageous. Proc Natl Acad Sci USA 105:11055–11059

    Article  CAS  PubMed Central  Google Scholar 

  • Luria AR (1966) Higher cortical functions in man. Tavistock, London

    Google Scholar 

  • Mattson AJ, Levin HS (1990) Frontal lobe dysfunction following closed-head injury: a review of the literature. J Nerv Ment Dis 178:282–291

    Article  CAS  PubMed  Google Scholar 

  • McKinney TL, Euler MJ, Butner JE (2020) It’s about time: the role of temporal variability in improving assessment of executive functioning. Clin Neuropsychol 34:619–642

    Article  PubMed  Google Scholar 

  • Monto S, Palva S, Voipio J, Palva JM (2008) Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. J Neurosci 28:8268–8272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan BP, Segalowitz SJ, Hofer SM, Smart CM (2020) A multi-timescale, multi-method perspective on older adult neurocognitive adaptability. Clin Neuropsychol 34:643–677

    Article  PubMed  Google Scholar 

  • Novikov E, Novikov A, Shannahoff-Khalsa D, Schwartz B, Wright J (1997) Scale-similar activity in the brain. Phys Rev E 56:R2387–R2389

    Article  CAS  Google Scholar 

  • O’Hara KP, Payne SJ (1998) The effects of operator implementation cost on planfulness of problem solving and learning. Cogn Psychol 35:34–70

    Article  PubMed  Google Scholar 

  • Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW (1990) Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28:1021–1034

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lange KW, Robbins TW (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115:1727–1751

    Article  PubMed  Google Scholar 

  • Ozga JE, Povroznik JM, Engler-Chiurazzi EB, Haar CV (2018) Executive (dys) function after traumatic brain injury: special considerations for behavioral pharmacology. Behav Pharmacol 29:617–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palva JM, Zhigalov A, Hirvonen J, Korhonen O, Linkenkaer-Hansen K, Palva S (2013) Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc Natl Acad Sci USA 110:3585–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantelis C, Barnes TRE, Nelson HE, Tanner S, Weatherley L, Owen AM, Robbins TW (1997) Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120:1823–1843

    Article  PubMed  Google Scholar 

  • Papo D (2014) Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Front Syst Neurosci 8:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Papo D (2015) How can we study reasoning in the brain? Front Hum Neurosci 9:222

    Article  PubMed  PubMed Central  Google Scholar 

  • Papo D (2019) Gauging functional brain activity: from distinguishability to accessibility. Front Physiol 10:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Papo D (1998) Zettin’s Task: a new neuropsychological test for closed-head injury patients. A cognitive study. MSc dissertation, University College London.

  • Popivanov D, Stomonyakov V, Minchev Z, Jivkova S, Dojnov P, Jivkov S, Christova E, Kosev S (2006) Multifractality of decomposed EEG during imaginary and real visual-motor tracking. Biol Cybern 94(2):149–156

  • Pillai AS, Jirsa VK (2017) Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior. Neuron 94:1010–1026

    Article  CAS  PubMed  Google Scholar 

  • Price CJ, Friston KJ (2002) Degeneracy and cognitive anatomy. Trends Cogn Sci 6:416–421

    Article  PubMed  Google Scholar 

  • Puente AN, Cohen ML, Aita S, Brandt J (2016) Behavioral ratings of executive functioning explain instrumental activities of daily living beyond test scores in Parkinson’s disease. Clin Neuropsychol 30:95–106

    Article  PubMed  Google Scholar 

  • Purdy MH (2016) Executive functions: theory, assessment, and treatment. In: Kimbarow ML (ed) Cognitive communication disorders. Plural Publishing Inc, pp 83–128

    Google Scholar 

  • Rapp PE, Jimenez-Montano MA, Langs RJ, Thomson L, Mees AI (1991) Toward a quantitative characterization of patient-therapist communication. Math Biosci 105:207–227

    Article  CAS  PubMed  Google Scholar 

  • Reddi BAJ, Carpenter RHS (2000) The influence of urgency on decision time. Nat Neurosci 3:827–830

    Article  CAS  PubMed  Google Scholar 

  • Reinvang I, Nordby H, Nielsen CS (2000) Information processing deficits in head injury assessed with ERPs reflecting early and late processing stages. Neuropsychologia 38:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Rhodes T, Turvey MT (2007) Human memory retrieval as Lévy foraging. Physica A 385:255–260

    Article  Google Scholar 

  • Rogers RD, Sahakian BJ, Hodges JR, Polkey CE, Kennard C, Robbins TW (1998) Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain 121:815–842

    Article  PubMed  Google Scholar 

  • Sbordone RJ (2010) Neuropsychological tests are poor at assessing the frontal lobes, executive functions, and neurobehavioral symptoms of traumatically brain-injured patients. Psychol Inj Law 3:25–35

    Article  Google Scholar 

  • Schiepek G, Kowalik ZJ, Schütz A, Köhler M, Richter K, Strunk G, Mühlnickel W, Elbert T (1997) Psychotherapy as a chaotic process I. Coding the client-therapist interaction by means of sequential plan analysis and the search for chaos: a stationary approach. Psychother Res 7:173–194

    Article  Google Scholar 

  • Schmitter-Edgecombe M, Sumida C, Cook DJ (2020) Bridging the gap between performance-based assessment and self-reported everyday functioning: an ecological momentary assessment approach. Clin Neuropsychol 34:678–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz MF, Montgomery MW, Buxbaum LJ, Lee SS, Carew TG, Coslett HB, Ferraro M, Fitzpatrick-DeSalme E, Hart T, Mayer N (1998) Naturalistic action impairment in closed head injury. Neuropsychology 12:13–28

    Article  CAS  PubMed  Google Scholar 

  • Shallice T (1982) Specific impairments in planning. Phil Trans r Soc B 298:199–209

    CAS  PubMed  Google Scholar 

  • Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114:727–741

    Article  PubMed  Google Scholar 

  • Shapiro Y (2015) Dynamical systems therapy (DST): theory and practical applications. Psychoanal Dialogues 25:83–107

    Article  Google Scholar 

  • Shaw NA (2002) The neurophysiology of conclussion. Progr Neurobiol 67:281–344

    Article  CAS  Google Scholar 

  • Simon HA (1956) Rational choice and the structure of the environment. Psy Rev 63:129–138

    Article  CAS  Google Scholar 

  • Soto EF, Kofler MJ, Singh LJ, Wells EL, Irwin LN, Groves NB, Miller CE (2020) Executive functioning rating scales: ecologically valid or construct invalid? Neuropsychology 34:605

    Article  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Pachana NA (2006) Ecological validity in neuropsychological assessment: a case for greater consideration in research with neurologically intact populations. Arch Clin Neuropsychol 21:327–337

    Article  PubMed  Google Scholar 

  • Stadler BMR, Stadler PF, Wagner GP, Fontana W (2001) The topology of the possible: formal spaces underlying patterns of evolutionary change. J Theor Biol 213:241–274

    Article  CAS  PubMed  Google Scholar 

  • Stamenova V, Levine B (2019) Effectiveness of goal management training® in improving executive functions: a meta-analysis. Neuropsychol Rehabil 29:1569–1599

    Article  PubMed  Google Scholar 

  • Stuss DT (2011a) Functions of the frontal lobes: relation to executive functions. J Int Neuropsychol Soc 17:759–765

    Article  PubMed  Google Scholar 

  • Stuss DT (2011b) Traumatic brain injury: relation to executive dysfunction and the frontal lobes. Curr Opin Neurol 24:584–589

    Article  PubMed  Google Scholar 

  • Stuss DT, Benson DF (1986) The frontal lobes. Raven, New York

    Google Scholar 

  • Stuss DT, Pogue J, Buckle L, Bonder J (1994) Characterization of variability of performance in patients with traumatic brain injury: variability and consistency on reaction time tests. Neuropsychology 8:316–324

    Article  Google Scholar 

  • Stuss DT, Murphy KJ, Binns MA, Alexander MP (2003) Staying on the job: the frontal lobes control individual performance variability. Brain 126:2363–2380

    Article  PubMed  Google Scholar 

  • Thivierge JP, Marcus GF (2007) The topographic brain: from neural connectivity to cognition. Trends Neurosci 30:251–259

    Article  CAS  PubMed  Google Scholar 

  • Tognoli E, Kelso JAS (2014) The metastable brain. Neuron 81:35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA 96:3257–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Orden GC, Holden JG, Turvey MT (2003) Self-organization of cognitive performance. J Exp Psychol Gen 132:331–350

    Article  PubMed  Google Scholar 

  • Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wagenmakers E-J, Farrell S, Ratcliff R (2004) Estimation and interpretation of 1/fa noise in human cognition. Psychon Bull Rev 11:579–615

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward G, Allport DA (1997) Planning and problem-solving using the five-disc Tower of London. Q J Exp Psychol A 50A:49–78

    Article  Google Scholar 

  • West R, Alain C (2000) Evidence for the transient nature of a neural system supporting goal-directed action. Cereb Cortex 10:748–752

    Article  CAS  PubMed  Google Scholar 

  • Ziemnik RE, Suchy Y (2019) Ecological validity of performance-based measures of executive functions: is face validity necessary for prediction of daily functioning? Psychol Assess 31:1307–1318

    Article  PubMed  Google Scholar 

  • Zoccolotti P, Matano A, Deloche G, Cantagallo A, Passadori A, Leclercq M, Braga L, Cremel N, Pittau P, Renom M, Rousseaux M, Truche A, Fimm B, Zimmermann P (2000) Patterns of attentional impairment following closed head injury: a collaborative European study. Cortex 36:93–107

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Papo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papo, D. Attaining the recesses of the cognitive space. Cogn Neurodyn 16, 767–778 (2022). https://doi.org/10.1007/s11571-021-09755-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-021-09755-1

Keywords

Navigation