Skip to main content
Log in

Nonlinear relationship between CAN current and \(Ca^{2+}\) influx underpins synergistic action of muscarinic and NMDA receptors on bursts induction in midbrain dopaminergic neurons

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Bursting of midbrain dopamine (DA) neurons is believed to represent an important reward signal that instructs and reinforces goal-directed behaviors. In DA neurons, many afferents, including cholinergic and glutamatergic inputs, induce bursting, and it is suggested that a synergy exists between these afferents in bursting induction. However, the underlying mechanisms of the role and the synergy of muscarinic receptors (mAChRs) and NMDA receptors (NMDARs) in bursting induction remain unclear. Present work bestowed analysis using a mathematical model of DA neurons to demonstrate the underlying mechanisms. Activation of mAChRs, leading to rapid translocation of TRPC channels to cell surface, recruited \(Ca^{2+}\)-activated nonspecific (CAN) current (\(I_{CAN}\)), meanwhile NMDARs excitation triggered \(Ca^{2+}\) influx, which induced the positive feedback loop of \(Ca^{2+}\) and \(I_{CAN}\), respectively, yielded a robust ramping depolarization with a superimposed high-frequency spiking. In some DA cells, neither NMDARs nor mAChRs induced positive feedback loop unless they were activated simultaneously to induce bursting. Our experimental results verified those theoretical findings. These together unveil the underlying mechanisms of the role and synergy of mAChRs and NMDARs in bursting induction emerge from the nonlinear relationship between \(Ca^{2+}\) influx and \(I_{CAN}\). Given the diverse and complex nature of neural circuitry and the DA neuron heterogeneity, our work provides new insights to understand specific afferents, the synergy between those afferents, and the differences in intrinsic excitability to be integrated by the bursting to accurately characterize the dopamine signals in the valances of reward and reinforcement, and a broad spectrum of neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addy NA, Nunes EJ, Wickham RJ (2015) Muscarinic, but not nicotinic, acetylcholine receptor blockade in the ventral tegmental area attenuates cue-induced sucrose-seeking. Behav Brain Res 291:372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderegg A, Poulin JF, Awatramani R (2015) Molecular heterogeneity of midbrain dopaminergic neurons—moving toward single cell resolution. FEBS Lett 589:3714–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brichta L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinsons disease: an update. Front Neuroanat 8:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Brignani S, Pasterkamp RJ (2017) Neuronal subset-specific migration and axonal wiring mechanisms in the developing midbrain dopamine system. Front Neuroanat 11:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chergui K, Charléty PJ, Akaoka H et al (1993) Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci 5:137–144

    Article  CAS  PubMed  Google Scholar 

  • Dougalis AG, Matthews GAC, Liss B et al (2017) Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): a voltage-clamp and computational modelling study. J Comput Neurosci 42:275–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Floresco SB, West AR, Ash B et al (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973

    Article  CAS  PubMed  Google Scholar 

  • Forster GL, Blaha CD (2000) Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur J Neurosci 12:3596–3604

    Article  CAS  PubMed  Google Scholar 

  • Giampá C, DeMarch Z, Patassini S et al (2007) Immunohistochemical localization of TRPC6 in the rat substantia nigra. Neurosci Lett 424:170–174

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia HG, Yamuy J, Sampogna S et al (2003) Colocalization of gamma-aminobutyric acid and acetylcholine in neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat: a light and electron microscopic study. Brain Res 992:205–219

    Article  CAS  PubMed  Google Scholar 

  • Komendantov AO, Komendantova OG, Johnson SW et al (2004) A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol 91:346–357

    Article  CAS  PubMed  Google Scholar 

  • Liu YD, Harding M, Pittman A et al (2014) Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. J Neurophysiol 112:1119–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge DJ, Grace AA (2006a) The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. Proc Natl Acad Sci USA 103:5167–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodge DJ, Grace AA (2006b) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31:1356–1361

    Article  CAS  PubMed  Google Scholar 

  • Löf E, Ericson M, Stomberg R, Söderpalm B (2007) Characterization of ethanol-induced dopamine elevation in the rat nucleus accumbens. Eur J Pharmacol 555:148–155

    Article  PubMed  CAS  Google Scholar 

  • Mameli-Engvall M, Evrard A, Pons S et al (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50:911–921

    Article  CAS  PubMed  Google Scholar 

  • Mao DY, McGehee DS (2010) Nicotine and behavioral sensitization. J Mol Neurosci 40:154–163

    Article  CAS  PubMed  Google Scholar 

  • Miceli MD, Husson Z, Ruel P et al (2020) In silico hierarchical clustering of neuronal populations in the rat ventral tegmental area based on extracellular electrophysiological properties. Front Neural Circuits 14:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Morozova EO, Zakharov D, Gutkin BS et al (2016) Dopamine neurons change the type of excitability in response to stimuli. PLoS Comput Biol 12:e1005233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morozova EO, Myroshnychenko M, Zakharov D et al (2016) Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. J Neurophysiol 116:1900–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrejeru A, Wei A, Ramirez JM (2011) Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol 589:2497–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakman SA, Faris PL, Kerr PE et al (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia-nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oster A, Faure P, Gutkin BS (2015) Mechanisms for multiple activity modes of VTA dopamine neurons. Front Comput Neurosci 9:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan WX, Schmidt R, Wickens JR et al (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25:6235–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippart F, Destreel G, Merino-Sepúlveda P et al (2016) Differential somatic \(Ca^{2+}\) channel profile in midbrain dopaminergic neurons. J Neurosci 36:7234–7245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips PE, Robinson DL, Stuber GD et al (2003) Real-time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast-scan cyclic voltammetry. Methods Mol Med 79:443–464

    CAS  PubMed  Google Scholar 

  • Prisco S, Natoli S, Bernardi G, Mercuri NB (2002) Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 42:289–296

    Article  CAS  PubMed  Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7:967–975

    Article  CAS  PubMed  Google Scholar 

  • Rubin JE, Hayes JA, Mendenhall JL et al (2009) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci USA 106:2939–2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan V, Arabali D, Jochems A et al (2015) Transition between encoding and consolidation/replay dynamics via cholinergic modulation of CAN current: a modeling study. Hippocampus 25:1052–1070

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2002) Getting formal with review dopamine and reward. Neuron 36:241–263

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH et al (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    Article  CAS  PubMed  Google Scholar 

  • Sombers LA, Beyene M, Carelli RM, Wightman RM (2009) Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J Neurosci 29:1735–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanos M, Xie XH, Gras-Najjar J et al (2019) NMDA receptor-dependent cholinergic modulation of mesolimbic dopamine cell bodies: neurochemical and behavioral studies. ACS Chem Neurosci 10:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Tai C, Hines DJ, Choi HB et al (2011) Plasma membrane insertion of TRPC5 channels contributes to the cholinergic plateau potential in hippocampal CA1 pyramidal neurons. Hippocampus 21:958–967

    CAS  PubMed  Google Scholar 

  • Tozzi A, Bengtson CP, Longone P et al (2003) Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur J Neurosci 18:2133–2145

    Article  PubMed  Google Scholar 

  • Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Wang HL (1994a) CCK-8-evoked cationic currents in substantia nigra dopaminergic neurons are mediated by \(InsP_3\)-induced \(Ca^{2+}\) release. Neurosci Lett 175:95–98

    Article  CAS  PubMed  Google Scholar 

  • Wu T, Wang HL (1994b) CCK-8 excites substantia nigra dopaminergic neurons by increasing a cationic conductance. Neurosci Lett 170:229–232

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Isa T (2003) Fulfenamic acid sensitive, \(Ca^{2+}\)-dependent inward current induced by nicotinic acetylcholine receptors in dopamine neurons. Neurosci Res 46:463–473

    Article  CAS  PubMed  Google Scholar 

  • Zellner MR, Kest K, Ranaldi R (2009) NMDA receptor antagonism in the ventral tegmental area impairs acquisition of reward-related learning. Behav Brain Res 197:442–449

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu YD, Chen XH (2005) Carbachol induces burst firing of dopamine cells in the ventral tegmental area by promoting calcium entry through L-type channels in the rat. J Physiol 568:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported the Scientific Research Foundation of the CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province (KXYSWS2004), and by the Scientific Research Foundation of LeShan Normal University under the Grant Nos. RC202014 and BW201901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjiao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liu, F., Wen, L. et al. Nonlinear relationship between CAN current and \(Ca^{2+}\) influx underpins synergistic action of muscarinic and NMDA receptors on bursts induction in midbrain dopaminergic neurons. Cogn Neurodyn 16, 719–731 (2022). https://doi.org/10.1007/s11571-021-09740-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-021-09740-8

Keywords

Navigation